27 resultados para Asymptotic expansions
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Eigenstates of a particle in a localized and unconfined harmonic potential well are investigated. Effects due to the variation of the potential parameters as well as certain results from asymptotic expansions are discussed. © 2012 Springer Science+Business Media, LLC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Markovian algorithms for estimating the global maximum or minimum of real valued functions defined on some domain Omega subset of R-d are presented. Conditions on the search schemes that preserve the asymptotic distribution are derived. Global and local search schemes satisfying these conditions are analysed and shown to yield sharper confidence intervals when compared to the i.i.d. case.
Resumo:
The sensitivity of parameters that govern the stability of population size in Chrysomya albiceps and describe its spatial dynamics was evaluated in this study. The dynamics was modeled using a density-dependent model of population growth. Our simulations show that variation in fecundity and mainly in survival has marked effect on the dynamics and indicates the possibility of transitions from one-point equilibrium to bounded oscillations. C. albiceps exhibits a two-point limit cycle, but the introduction of diffusive dispersal induces an evident qualitative shift from two-point limit cycle to a one fixed-point dynamics. Population dynamics of C. albiceps is here compared to dynamics of Cochliomyia macellaria, C. megacephala and C. putoria.
Resumo:
The equilibrium dynamics of native and introduced blowflies is modelled using a density-dependent model of population growth that takes into account important features of the life-history in these flies. A theoretical analysis indicates that the product of maximum fecundity and survival is the primary determinant of the dynamics. Cochliomyia macellaria, a blowfly native to the Americas and the introduced Chrysomya megacephala and Chrysomya putoria, differ in their dynamics in that the first species shows a damping oscillatory behavior leading to a one-point equilibrium, whereas in the last two species population numbers show a two-point limit cycle. Simulations showed that variation in fecundity has a marked effect on the dynamics and indicates the possibility of transitions from one-point equilibrium to bounded oscillations and aperiodic behavior. Variation in survival has much less influence on the dynamics.
Resumo:
An algorithm for deriving a continued fraction that corresponds to two series expansions simultaneously, when there are zero coefficients in one or both series, is given. It is based on using the Q-D algorithm to derive the corresponding fraction for two related series, and then transforming it into the required continued fraction. Two examples are given. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Asymptotic 'soliton train' solutions of integrable wave equations described by inverse scattering transform method with second-order scalar eigenvalue problem are considered. It is shown that if asymptotic solution can be presented as a modulated one-phase nonlinear periodic wavetrain, then the corresponding Baker-Akhiezer function transforms into quasiclassical eigenfunction of the linear spectral problem in weak dispersion limit for initially smooth pulses. In this quasiclassical limit the corresponding eigenvalues can be calculated with the use of the Bohr Sommerfeld quantization rule. The asymptotic distributions of solitons parameters obtained in this way specify the solution of the Whitham equations. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Asymptotic soliton trains arising from a 'large and smooth' enough initial pulse are investigated by the use of the quasiclassical quantization method for the case of Kaup-Boussinesq shallow water equations. The parameter varying along the soliton train is determined by the Bohr-Sommerfeld quantization rule which generalizes the usual rule to the case of 'two potentials' h(0)(x) and u(0)(x) representing initial distributions of height and velocity, respectively. The influence of the initial velocity u(0)(x) on the asymptotic stage of the evolution is determined. Excellent agreement of numerical solutions of the Kaup-Boussinesq equations with predictions of the asymptotic theory is found. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The aim of this paper is to study finite temperature effects in effective quantum electrodynamics using Weisskopf's zero-point energy method in the context of thermo, field dynamics. After a general calculation for a weak magnetic field at fixed T, the asymptotic behavior of the Euler-Kockel-Heisenberg Lagrangian density is investigated focusing on the regularization requirements in the high temperature limit. In scalar QED the same problem is also discussed.
Resumo:
Asymptotic behavior of initially large and smooth pulses is investigated at two typical stages of their evolution governed by the defocusing nonlinear Schrodinger equation. At first, wave breaking phenomenon is studied in the limit of small dispersion. A solution of the Whitham modulational equations is found for the case of dissipationless shock wave arising after the wave breaking point. Then, asymptotic soliton trains arising eventually from a large and smooth initial pulse are studied by means of a semiclassical method. The parameter varying along the soliton train is calculated from the generalized Bohr-Sommerfeld quantization rule, so that the distribution of eigenvalues depends on two functions-intensity rho(0)(x) of the initial pulse and its initial chirp v(0)(x). The influence of the initial chirp on the asymptotic state is investigated. Excellent agreement of the numerical solution of the defocusing NLS equation with predictions of the asymptotic theory is found.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)