54 resultados para Applied artificial intelligence
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Petroleum well drilling monitoring has become an important tool for detecting and preventing problems during the well drilling process. In this paper, we propose to assist the drilling process by analyzing the cutting images at the vibrating shake shaker, in which different concentrations of cuttings can indicate possible problems, such as the collapse of the well borehole walls. In such a way, we present here an innovative computer vision system composed by a real time cutting volume estimator addressed by support vector regression. As far we know, we are the first to propose the petroleum well drilling monitoring by cutting image analysis. We also applied a collection of supervised classifiers for cutting volume classification. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work describes the new improvements of the SISTEMAT project, one system for structural elucidation mainly in the field of Natural Products Chemistry. Some examples of the resolution of problems using C-13 Nuclear Magnetic Resonance and Mass Spectroscopy are given. Programs to discover new heuristic rules for structure generation are discussed. The data base contains about 10000 C-13 NMR spectra.
Resumo:
This paper shows a comparative study between the Artificial Intelligence Problem Solving and the Human Problem Solving. The study is based on the solution by many ways of problems proposed via multiple-choice questions. General techniques used by humans to solve this kind of problems are grouped in blocks and each block is divided in steps. A new architecture for ITS - Intelligent Tutoring System is proposed to support experts' knowledge representation and novices' activities. Problems are represented by a text and feasible answers with particular meaning and form, to be rigorously analyzed by the solver to find the right one. Paths through a conceptual space of states represent each right solution.
Resumo:
In this paper, we introduce a DAI approach called hereinafter Fuzzy Distributed Artificial Intelligence (FDAI). Through the use of fuzzy logic, we have been able to develop mechanisms that we feel may effectively improve current DAI systems, giving much more flexibility and providing the subsidies which a formal theory can bring. The appropriateness of the FDAI approach is explored in an important application, a fuzzy distributed traffic-light control system, where we have been able to aggregate and study several issues concerned with fuzzy and distributed artificial intelligence. We also present a number of current research directions necessary to develop the FDAI approach more fully.
Resumo:
This paper introduces a method for the supervision and control of devices in electric substations using fuzzy logic and artificial neural networks. An automatic knowledge acquisition process is included which allows the on-line processing of operator actions and the extraction of control rules to replace gradually the human operator. Some experimental results obtained by the application of the implemented software in a simulated environment with random signal generators are presented.
Resumo:
Secondary phases such as Laves and carbides are formed during the final solidification stages of nickel based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ″ and δ phases. This work presents a new application and evaluation of artificial intelligent techniques to classify (the background echo and backscattered) ultrasound signals in order to characterize the microstructure of a Ni-based alloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasound signals were acquired using transducers with frequencies of 4 and 5 MHz. Thus with the use of features extraction techniques, i.e.; detrended fluctuation analysis and the Hurst method, the accuracy and speed in the classification of the secondary phases from ultrasound signals could be studied. The classifiers under study were the recent optimum-path forest (OPF) and the more traditional support vector machines and Bayesian. The experimental results revealed that the OPF classifier was the fastest and most reliable. In addition, the OPF classifier revealed to be a valid and adequate tool for microstructure characterization through ultrasound signals classification due to its speed, sensitivity, accuracy and reliability. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.
Resumo:
The capacitor placement problem for radial distribution networks aims to determine capacitor types, sizes, locations and control scheme. This is a combinatorial problem that can be formulated as a mixed integer nonlinear program. The paper presents an algorithm inspired in artificial immune systems and developed for this specific problem. A good performance was obtained through experimental tests applied to known systems. © 2006 IEEE.
Resumo:
In the search for productivity increase, industry has invested on the development of intelligent, flexible and self-adjusting method, capable of controlling processes through the assistance of autonomous systems, independently whether they are hardware or software. Notwithstanding, simulating conventional computational techniques is rather challenging, regarding the complexity and non-linearity of the production systems. Compared to traditional models, the approach with Artificial Neural Networks (ANN) performs well as noise suppression and treatment of non-linear data. Therefore, the challenges in the wood industry justify the use of ANN as a tool for process improvement and, consequently, add value to the final product. Furthermore, Artificial Intelligence techniques such as Neuro-Fuzzy Networks (NFNs) have proven effective, since NFNs combine the ability to learn from previous examples and generalize the acquired information from the ANNs with the capacity of Fuzzy Logic to transform linguistic variables in rules.
Resumo:
This work describes a ludic proposal for programming learning of industrial robots to be developed by groups of engineering students. Two projects are presented: Tic-tac-toe Opponent Robot and Environmentalist Robot. The first project use competitive search techniques of the Artificial Intelligence, computational vision, electronic and pneumatic concepts for ability decision making for a robotic agent on the tic-tae-toe game. The second project consists of a game that contains a questions and answers database about environmental themes. An algorithm selects the group of questions to be answered by the player, analyses the answers and sends the result to a industrial robot through serial port. According with the player performance, the robot makes congratulation movements and giving a gift to the winner player. Otherwise, the robot makes movements, disapproving the player performance.
Resumo:
This paper presents the study of computational methods applied to histological texture analysis in order to identify plant species, a very difficult task due to the great similarity among some species and presence of irregularities in a given species. Experiments were performed considering 300 ×300 texture windows extracted from adaxial surface epidermis from eight species. Different texture methods were evaluated using Linear Discriminant Analysis (LDA). Results showed that methods based on complexity analysis perform a better texture discrimination, so conducting to a more accurate identification of plant species. © 2009 Springer Berlin Heidelberg.
Resumo:
This paper analyzes the non-linear dynamics of a MEMS Gyroscope system, modeled with a proof mass constrained to move in a plane with two resonant modes, which are nominally orthogonal. The two modes are ideally coupled only by the rotation of the gyro about the plane's normal vector. We demonstrated that this model has an unstable behavior. Control problems consist of attempts to stabilize a system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. We also developed a particle swarm optimization technique for reducing the oscillatory movement of the nonlinear system to a periodic orbit. © 2010 Springer-Verlag.
Resumo:
The computers and network services became presence guaranteed in several places. These characteristics resulted in the growth of illicit events and therefore the computers and networks security has become an essential point in any computing environment. Many methodologies were created to identify these events; however, with increasing of users and services on the Internet, many difficulties are found in trying to monitor a large network environment. This paper proposes a methodology for events detection in large-scale networks. The proposal approaches the anomaly detection using the NetFlow protocol, statistical methods and monitoring the environment in a best time for the application. © 2010 Springer-Verlag Berlin Heidelberg.
Resumo:
This paper introduces a methodology for predicting the surface roughness of advanced ceramics using Adaptive Neuro-Fuzzy Inference System (ANFIS). To this end, a grinding machine was used, equipped with an acoustic emission sensor and a power transducer connected to the electric motor rotating the diamond grinding wheel. The alumina workpieces used in this work were pressed and sintered into rectangular bars. Acoustic emission and cutting power signals were collected during the tests and digitally processed to calculate the mean, standard deviation, and two other statistical data. These statistics, as well the root mean square of the acoustic emission and cutting power signals were used as input data for ANFIS. The output values of surface roughness (measured during the tests) were implemented for training and validation of the model. The results indicated that an ANFIS network is an excellent tool when applied to predict the surface roughness of ceramic workpieces in the grinding process.