244 resultados para Alumina crucibles
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Heavy metal oxide (HMO) glasses have received special attention due to their optical, electrical and magnetic properties. The problem with these glasses is their corrosive nature. In this work, three ceramic crucibles (Al 2O 3, SnO 2 and ZrO 2) were tested in the melting of the system 40 PbO-35 BiO 1.5-25 GaO 1.5 (cation-%). After glass melting, crucibles were transversally cut and analyzed by scanning electronic microscopy (SEM), coupled to microanalysis by energy dispersive spectroscopy (EDS). Results indicated that zirconia crucibles presented the highest corrosion, probably due to its smallest grain size. Tin oxide crucibles presented a low corrosion with small penetration of the glass into the crucible. This way, these crucibles are an interesting alternative to melt corrosive glasses in instead of gold or platinum crucibles. It is important to emphasize the lower cost of tin oxide crucibles, compared to gold or platinum ones.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Atualmente a preocupação ambiental está fazendo com que as empresas busquem diminuir os impactos ambientais por elas causados, ao mesmo tempo em que melhoram a qualidade do produto e processos de fabricação. Logo, muitas pesquisas estão sendo desenvolvidas na área de usinagem para se analisar o real dano ao meio ambiente quando usados diferentes métodos de lubri-refrigeração. Este trabalho teve como objetivo analisar a qualidade da peça produzida e o desgaste do ferramental de corte de uma retificadora plana ao se usinar cerâmica de alumina com dois métodos distintos de aplicação de fluido de corte: método convencional com vazão de 458,3 mL/h e o método da mínima quantidade de lubrificação (MQL) com 100 mL/h. A partir dos resultados obtidos pode-se constatar que para os mesmos parâmetros de usinagem a técnica do MQL utilizou uma quantidade muito menor de fluido e garantiu bons resultados de desgaste diametral do rebolo. No entanto, a qualidade da peça foi bem pior para o método do MQL em relação a técnica de refrigeração convencional. Estes resultados mostraram que se utilizando formas alternativas de lubrificação para reduzir o uso do fluido de corte, são possíveis dependendo de quais fatores são mais importantes para o processo que se deseja. Nesse sentido, se o método do MQL fosse adotado pelas empresas dependentes da retificação, certamente iria trazer, de um lado, benefícios quanto a problemas de descarte e reciclagem de fluido de corte, mas por outro lado, levaria a uma menor qualidade superficial das peças.
Resumo:
Several researches have been developed in order to verify the porosity effect over the ceramic material properties. The starch consolidation casting (SCC) allows to obtain porous ceramics by using starch as a binder and pore forming element. This work is intended to describe the porous mathematical behavior and the mechanical resistance at different commercial starch concentration. Ceramic samples were made with alumina and potato and corn starches. The slips were prepared with 10 to 50 wt% of starch. The specimens were characterized by apparent density measurements and three-point flexural test associated to Weibull statistics. Results indicated that the porosity showed a first-order exponential equation e(-x/c) increasing in both kinds of starches, so it was confirmed that the alumina ceramic porosity is related to the kind of starch used. The mechanical resistance is represented by a logarithmic expression R = A + B/1+10((Log(x0)-P)C).
Resumo:
In this paper, pre-gelling starch was used to consolidate alumina-dense ceramic suspensions. The colloidal processing of the ceramic was prepared with alumina and commercial potato starch, and slips were prepared with 55 vol% of solids and 0.5 wt.% of starch. This small amount of starch was possible because of a previous pre-gelling starch treatment, resulting in more homogeneous suspensions and particles smaller than starch granules. Additionally, Sucrose was also used as a dispersion aid. After sintering, the samples were analysed according to their mechanical properties. These processes produced ceramics with a 93% relative density, 325 MPa flexural strength, and a Weibull module whose value wits m = 10, maintaining the capacity of this process to produce complex geometric shaped ceramics. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Influence of cassava starch content and sintering temperature on the alumina consolidation technique
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To compare the flexural strength of two glass-infiltrated high-strength ceramics and two veneering glass-ceramics.Materials and Methods: Four ceramic materials were tested: two glass-infiltrated high-strength ceramics used as framework in metal-free restorations [In-Ceram Zirconia IZ (Gr1) and In-Ceram Alumina IA (Gr2)], and two glass-ceramics used as veneering material in metal-free restorations [Vita VM7 (Gr3) and Vitadur-alpha (Gr4)]. Bar specimens (25 x 5 x 2 mm(3)) made from core ceramics, alumina, and zirconia/alumina composites were prepared and applied to a silicone mold, which rested on a base from a gypsum die material. The IZ and IA specimens were partially sintered in an In-Ceram furnace according to the firing cycle of each material, and then were infiltrated with a low-viscosity glass to yield bar specimens of high density and strength. The Vita VM7 and Vitadur-alpha specimens were made from veneering materials, by vibration of slurry porcelain powder and condensation into a two-part brass Teflon matrix (25 x 5 x 2 mm(3)). Excess water was removed with absorbent paper. The veneering ceramic specimens were then removed from the matrix and were fired as recommended by the manufacturer. Another ceramic application and sintering were performed to compensate the contraction of the feldspar ceramic. The bar specimens were then tested in a three-point bending test.Results: The core materials (Gr1: 436.1 +/- 54.8; Gr2: 419.4 +/- 83.8) presented significantly higher flexural strength (MPa) than the veneer ceramics (Gr3: 63.5 +/- 9.9; Gr4: 57.8 +/- 12.7).Conclusion: In-Ceram Alumina and Zirconia were similar statistically and more resistant than VM7 and Vitadur-alpha.
Resumo:
This study tested the bond strength of a resin cement to a glass-infiltrated zirconia-alumina ceramic after three conditioning methods and using two test methods (shear-SBS versus microtensile-MTBS). Ceramic blocks for MTBS and ceramic disks for SBS were fabricated. Three surface conditioning (SC) methods were evaluated: (1) 110-mu m Al(2)O(3)+Silanization; (2) Chairside silica coating+silanization: (3) Laboratory silica coating+silanization. Following surface conditioning, the resin cement (Panavia F) was bonded to the conditioned ceramics. Although no statistically significant differences (p=0.1076) were seen between the test methods, results yielded with the different surface conditioning methods showed statistically significant differences (p<0.0001) (SC2=SC3>SC1.). As for the interaction between the factors, two-way ANOVA showed that it was not statistically significant (p=0.1443). MTBS test resulted in predominantly mixed failure (85%), but SBS test resulted in exclusively adhesive failure. on the effects of different surface conditioning methods, chairside and laboratory tribochemical silica coating followed by silanization showed higher bond strength results compared to those of aluminum oxide abrasion and silanization, independent of the test method employed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Titanium oxide is a good candidate as new support for hydrotreating (HDT) catalysts, but has the inconvenience of presenting small surface area and poor thermal stability. To overcome these handicaps TiO2-Al2O3 mixed oxides were proposed as catalyst support. Here, the results concerning the preparation, characterization and testing of molybdenum catalyst supported on titania-alumina are presented. The support was prepared by sol-gel route using titanium and aluminum isopropoxides, chelated with acetylacetone (acac) to promote similar hydrolysis ratio for both the alcoxides. The effect of nominal complexing ratios [acac]/[Ti] and of sol aging temperature on the structural features of nanometric particles was analyzed by quasi-elastic light scattering (QELS) and N-2 adsorption isotherm measurements. These characterizations have shown that the addition of acac and the increase of aging temperature favor the full dispersion of primary nanoparticles in mother acid solution. The dried powder presents a monomodal distribution of slit-shaped micropores, formed by irregular packing of platelet primary particles, surface area superior to 200 m(2) g(-1) and mean pore size of about 1 nm. These characteristics of porous texture are preserved after firing at 673 K. The diffraction patterns of sample fired above 973 K show only the presence of anatase crystalline phase. The crystalline structure of the support remained unaltered after molybdenum adsorption, but the surface area and the micropore volume were drastically reduced. (C) 2002 Published by Elsevier B.V. B.V.