38 resultados para ASYMPTOTIC BEHAVIOR

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to study finite temperature effects in effective quantum electrodynamics using Weisskopf's zero-point energy method in the context of thermo, field dynamics. After a general calculation for a weak magnetic field at fixed T, the asymptotic behavior of the Euler-Kockel-Heisenberg Lagrangian density is investigated focusing on the regularization requirements in the high temperature limit. In scalar QED the same problem is also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Asymptotic behavior of initially large and smooth pulses is investigated at two typical stages of their evolution governed by the defocusing nonlinear Schrodinger equation. At first, wave breaking phenomenon is studied in the limit of small dispersion. A solution of the Whitham modulational equations is found for the case of dissipationless shock wave arising after the wave breaking point. Then, asymptotic soliton trains arising eventually from a large and smooth initial pulse are studied by means of a semiclassical method. The parameter varying along the soliton train is calculated from the generalized Bohr-Sommerfeld quantization rule, so that the distribution of eigenvalues depends on two functions-intensity rho(0)(x) of the initial pulse and its initial chirp v(0)(x). The influence of the initial chirp on the asymptotic state is investigated. Excellent agreement of the numerical solution of the defocusing NLS equation with predictions of the asymptotic theory is found.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present paper we develop an algorithm to solve the time dependent Ginzburg-Landau equations, by using the link variables technique, for circular geometries. In addition, we evaluate the Helmholtz and Gibbs free energy, the magnetization, and the number of vortices. This algorithm is applied to a circular sector. We evaluate the superconduting-normal magnetic field transition, the magnetization, and the superconducting density. Our results point out that, as we reduce the superconducting area, the nucleation field increases. Nevertheless, as the angular width of the circular sector goes to small values the asymptotic behavior is independent of the sample area. We also show that the value of the first nucleation field is approximately the same independently of the form of the circular sector. Furthermore, we study the nucleation of giant and multivortex states for the different shapes of the present geometry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a simple procedure to obtain the maximally localized Wannier function of isolated bands in one-dimensional crystals with or without inversion symmetry. First, we discuss the generality of dealing with real Wannier functions. Next, we use a transfer-matrix technique to obtain nonoptimal Bloch functions which are analytic in the wave number. This produces two classes of real Wannier functions. Then, the minimization of the variance of the Wannier functions is performed, by using the antiderivative of the Berry connection. In the case of centrosymmetric crystals, this procedure leads to the Wannier-Kohn functions. The asymptotic behavior of the Wannier functions is also analyzed. The maximally localized Wannier functions show the expected exponential and power-law decays. Instead, nonoptimal Wannier functions may show reduced exponential and anisotropic power-law decays. The theory is illustrated with numerical calculations of Wannier functions for conduction electrons in semiconductor superlattices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We prove that the zeros of the polynomials P.. (a) of degree m, defined by Boros and Moll via[GRAPHICS]approach the lemmiscate {zeta epsilon C: \zeta(2) - 1\ = Hzeta < 0}, as m --> infinity. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let p be a prime, and let zeta(p) be a primitive p-th root of unity. The lattices in Craig's family are (p - 1)-dimensional and are geometrical representations of the integral Z[zeta(p)]-ideals < 1 - zeta(p)>(i), where i is a positive integer. This lattice construction technique is a powerful one. Indeed, in dimensions p - 1 where 149 <= p <= 3001, Craig's lattices are the densest packings known. Motivated by this, we construct (p - 1)(q - 1)-dimensional lattices from the integral Z[zeta(pq)]-ideals < 1 - zeta(p)>(i) < 1 - zeta(q)>(j), where p and q are distinct primes and i and fare positive integers. In terms of sphere-packing density, the new lattices and those in Craig's family have the same asymptotic behavior. In conclusion, Craig's family is greatly extended while preserving its sphere-packing properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we study the asymptotic behavior of (2+1)-dimensional quantum electrodynamics in the infrared region. We show that an appropriate redefinition of the fermion current operator leads to an asymptotic evolution operator that contains a divergent Coulomb phase factor and a contribution from the electromagnetic field at large distances, factored from the evolution operator for free fields, and we conclude that the modified scattering operator maps two spaces of coherent states of the electromagnetic field, as in the Kulish-Faddeev model for QED (quantum electrodynamics) in four space-time dimensions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce a quasianalytic nonlinear Schrodinger equation with beyond mean-field corrections to describe the dynamics of a zero-temperature dilute superfluid Fermi gas in the crossover from the weak-coupling Bardeen-Cooper-Schrieffer (BCS) regime, where k(F)parallel to a parallel to << 1 with a the s-wave scattering length and k(F) the Fermi momentum, through the unitarity limit k(F)a ->+/-infinity to the Bose-Einstein condensation (BEC) regime where k(F)a > 0. The energy of our model is parametrized using the known asymptotic behavior in the BCS, BEC, and the unitarity limits and is in excellent agreement with accurate Green's-function Monte Carlo calculations. The model generates good results for frequencies of collective breathing oscillations of a trapped Fermi superfluid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The coarsening of the nanoporous structure developed in undoped and 3% Sb-doped SnO2 sol-gel dip-coated films deposited on a mica substrate was studied by time-resolved small-angle x-ray scattering (SAXS) during in situ isothermal treatments at 450 and 650 degrees C. The time dependence of the structure function derived from the experimental SAXS data is in reasonable agreement with the predictions of the statistical theory of dynamical scaling, thus suggesting that the coarsening process in the studied nanoporous structures exhibits dynamical self-similar properties. The kinetic exponents of the power time dependence of the characteristic scaling length of undoped SnO2 and 3% Sb-doped SnO2 films are similar (alpha approximate to 0.09), this value being invariant with respect to the firing temperature. In the case of undoped SnO2 films, another kinetic exponent, alpha('), corresponding to the maximum of the structure function was determined to be approximately equal to three times the value of the exponent alpha, as expected for the random tridimensional coarsening process in the dynamical scaling regime. Instead, for 3% Sb-doped SnO2 films fired at 650 degrees C, we have determined that alpha(')approximate to 2 alpha, thus suggesting a bidimensional coarsening of the porous structure. The analyses of the dynamical scaling functions and their asymptotic behavior at high q (q being the modulus of the scattering vector) provided additional evidence for the two-dimensional features of the pore structure of 3% Sb-doped SnO2 films. The presented experimental results support the hypotheses of the validity of the dynamic scaling concept to describe the coarsening process in anisotropic nanoporous systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we consider a one-dimensional quasilinear parabolic equation and we prove that the lap number of any solution cannot increase through orbits as the time passes if the initial data is a continuous function. We deal with the lap number functional as a Lyapunov function, and apply lap number properties to reach an understanding on the asymptotic behavior of a particular problem. (c) 2006 Published by Elsevier Ltd.