147 resultados para drying oils
Resumo:
Turmeric (Curcuma longa L.), which has been used for long time as a spice, food preservative and coloring agent, is a rich source of beneficial phenolic compounds identified as curcuminoids. These phenolic compounds are known for their antioxidant, anti-inflammatory and antimutagenic properties, among others. On the other hand, they are very susceptible to oxidation, requiring protection against oxygen, light and heat. This protection can be achieved by microencapsulation. In this work, the characteristics and the stability of turmeric oleoresin encapsulated by freeze-drying using mixtures of maltodextrin and gelatin as wall materials were studied. Encapsulated turmeric oleoresin was stored at –20, 25 and 60 °C, in the absence of light, and analyzed over a period of 35 days for curcumin and total phenolic contents and color. Results showed that the samples produced with 26% maltodextrin/0.6% gelatin and 22% maltodextrin/3% gelatin presented good encapsulation efficiencies and solubility. In general, the method of encapsulation employed originated products with satisfactory thermal stability, although the encapsulated materials with a higher proportion of maltodextrin in relation to gelatin had better stabilities, especially at –20 and 25 °C temperatures.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study was addressed to investigate the composition and antifungal activity of essential oils from leaves of Piperaceae species (Piper aduncum, Piper amalago, Piper cernuum, Piper diospyrifolium, Piper crassinervium, Piper gaudichaudianum, Piper solmsianum, Piper regnellii, Piper tuberculatum, Piper umbelata and Peperomia obtusifolia) against Candida albicans, C. parapsilosis, C. krusei and Cryptococcus neoformans. The essential oils from P. aduncum, P. gaudichaudianum and P. solmsianum showed the highest antifungal activity against Cryptococcus neoformans with the MIC of 62.5, 62.5 and 3.9 mg.mL-1, respectively. The oil from P. gaudichaudianum showed activity against C. krusei with MIC of 31.25 mg.mL-1.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Oils extracted from Cucurbitaceae seeds were characterised for their fatty acid and tocopherol compositions. In addition, some physicochemical characteristics, total phenolic contents and the radical-scavenging activities were determined. Oil content amounted to 23.9% and 27.1% in melon and watermelon seeds, respectively. Physicochemical characteristics were similar to those of other edible oils and the oils showed significant antioxidant activities. Fatty acid composition showed total unsaturated fatty acid content of 85.2–83.5%, with linoleic acid being the dominant fatty acid (62.4–72.5%), followed by oleic acid (10.8–22.7%) and palmitic acid (9.2–9.8%). The oils, especially watermelon seed oil, showed high total tocopherol and phenolic contents. The γ-tocopherol was the predominant tocopherol in both oils representing 90.9 and 95.6% of the total tocopherols in melon and watermelon seed oils, respectively. The potential utilisation of melon and watermelon seed oils as a raw material for food, chemical and pharmaceutical industries appears to be favourable.
Resumo:
The aims of this study were to assess the turmeric oleoresin microencapsulation by freeze-drying with modified starch/gelatin and to evaluate its stability during storage at different temperatures and light. Encapsulated turmeric oleoresin w stored at −20, 25 and 60C, in the absence of light, and at 25C in the presence of light, and analyzed over a period of 6 weeks for curcumin and total phenolic contents and color. The different concentrations of wall material showed no significant effect on the curcumin retention. The best conditions for microencapsulation of turmeric oleoresin were: wall material composed of 30 g/100 g of modified starch + 1 g/100 g gelatin and mechanical homogenization. Encapsulated material was more stable during storage at −20C and less stable at 25C in the presence of light.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Aplicação de biofungicidas no controle do fungo Aspergillus flavus L. em amendoim (Arachis hypogaea)
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
China is an important center of origin for the genus Citrus L. of the family Rutaceae and is rich in wild Citrus species. The taxonomy of Citrus has been a subject of controversy for more than a half century. We propose that the metabolite profiles of Chinese native Citrus species can be used for classification and understanding of the taxonomic relationships within the Citrus germplasm. In this study, triplicate gas chromatography-mass spectrometry (GC-MS) metabolite profiles of 20 Citrus species/varieties were acquired, including 10 native varieties originating in China. R-(+)-limonene, alpha-pinene, sabinene and alpha-terpinene were found to be major characteristic components of the essential oils analyzed in this study, and these compounds contributed greatly to the metabolic classification. The three basic species of the subgenus Eucitrus (Swingle's system), i.e., C. reticulata Blanco, C. medica L. and C. grandis Osb., were clearly differentiated based upon their metabolite profiles using hierarchical cluster analysis (HCA) and partial least square-discriminant analysis (PLS-DA). All the presumed hybrid genotypes, including sweet orange (C. sinensis Osb.), sour orange (C. aurantium L.), lemon (C. limon Burm.f.), rough lemon (C. jambhiri Lush.), rangpur lime (C. limonia Osb.) and grapefruit (C. paradisi Macf.), were grouped closely together with one of their suggested parent species in the HCA-dendrogram and the PLS-DA score plot. These results clearly demonstrated that the metabolite profiles of Citrus species could be utilized for the taxonomic classification of the genus and are complementary to the existing taxonomic evidence, especially for the identification and differentiation of hybrid species.
Resumo:
The effect of ultrasound and osmotic dehydration pretreatments on papaya drying kinetics was investigated. The ultrasound pretreatment was carried out in an ultrasonic bath at 30 A degrees C. The osmotic pretreatment in sucrose solution was carried out in an incubator at 34 A degrees C and agitation of 80 rpm for 210 min. The drying process was conducted in a fixed bed dryer at 70 A degrees C. Experimental data were fitted successfully using the Page model for dried fresh and pretreated fruits, with coefficient of determination greater than 0.9992 and average relative error lower that 14.4 %. The diffusional model was used to describe the moisture transfer, and the effective water diffusivity was identified in the order of 10(-9) m(2) s(-1). It was found that drying rates of osmosed fruits were the lowest due to the presence of infused solutes, while the ultrasound pretreatment contributed to faster drying rates. Evaluation of the dried fruit was performed by means of total carotenoids retention. Ultrasound treatments in distilled water prior to air-drying gave rise to dried papayas with retention of carotenoids in the range 30.4-39.8 % and the ultrasonic-assisted osmotic dehydration of papayas showed carotenoids retention values up to 64.9 %, whereas the dried fruit without pretreatment showed carotenoids retention lower than 24 %.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)