262 resultados para Elliptic orbits
Resumo:
In this work the problem of a spacecraft bi-impulsive transfer between two given non coplanar elliptical orbits, with minimum fuel consumption, is solved considering a non-Keplerian force field (the perturbing forces include Earth gravity harmonics and atmospheric drag). The problem is transformed in the Two Point Boundary Value Problem. It is developed and implemented a new algorithm, that uses the analytical expressions developed here. A dynamics that considered a Keplerian force field was used to produce an initial guess to solve the Two Point Boundary Value Problem. Several simulations were performed to observe the spacecraft orbital behaviour by different kind of perturbations and constraints, on a fuel consumption optimization point of view. (C) 2002 COSPAR. Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this paper we study codimension-one Hopf bifurcation from symmetric equilibrium points in reversible equivariant vector fields. Such bifurcations are characterized by a doubly degenerate pair of purely imaginary eigenvalues of the linearization of the vector field at the equilibrium point. The eigenvalue movements near such a degeneracy typically follow one of three scenarios: splitting (from two pairs of imaginary eigenvalues to a quadruplet on the complex plane), passing (on the imaginary axis), or crossing (a quadruplet crossing the imaginary axis). We give a complete description of the behaviour of reversible periodic orbits in the vicinity of such a bifurcation point. For non-reversible periodic solutions. in the case of Hopf bifurcation with crossing eigenvalues. we obtain a generalization of the equivariant Hopf Theorem.
Resumo:
We have used the Liapunov exponent to explore the phase space of a dynamical system. Considering the planar, circular restricted three-body problem for a mass ratio mu = 10(-3) (close to the Jupiter/Sun case), we have integrated similar to 16,000 starting conditions for orbits started interior to that of the perturber and we have estimated the maximum Liapunov characteristic exponent for each starting condition. Despite the fact that the integrations, in general, are for only a few thousand orbital periods of the secondary, a comparative analysis of the Liapunov exponents for various values of the 'cut-off' gives a good overview of the structure of the phase space. It provides information about the diffusion rates of the various chaotic regions, the location of the regular regions associated with primary resonances and even details such as the location of secondary resonances that produce chaotic regions inside the regular regions of primary resonances.
Resumo:
Since the Voyager flybys, embedded moonlets have been proposed to explain some of the surprising structures observed in Saturn's narrow F ring. Experiments conducted with the Cassini spacecraft support this suggestion. Images of the F ring show bright compact spots, and seven occultations of stars by the F ring, monitored by ultraviolet and infrared experiments, revealed nine events of high optical depth. These results point to a large number of such objects, but it is not clear whether they are solid moonlets or rather loose particle aggregates. Subsequent images suggested an irregular motion of these objects so that a determination of their orbits consistent with the F ring failed. Some of these features seem to cross the whole ring. Here we show that these observations are explained by chaos in the F ring driven mainly by the 'shepherd' moons Prometheus and Pandora. It is characterized by a rather short Lyapunov time of about a few hundred orbital periods. Despite this chaotic diffusion, more than 93 per cent of the F-ring bodies remain confined within the F ring because of the shepherding, but also because of a weak radial mobility contrasted by an effective longitudinal diffusion. This chaotic stirring of all bodies involved prevents the formation of 'propellers' typical of moonlets, but their frequent ring crossings explain the multiple radial 'streaks' seen in the F ring. The related 'thermal' motion causes more frequent collisions between all bodies which steadily replenish F-ring dust and allow for ongoing fragmentation and re-accretion processes (ring recycling).
Resumo:
In this work we consider a one-dimensional quasilinear parabolic equation and we prove that the lap number of any solution cannot increase through orbits as the time passes if the initial data is a continuous function. We deal with the lap number functional as a Lyapunov function, and apply lap number properties to reach an understanding on the asymptotic behavior of a particular problem. (c) 2006 Published by Elsevier Ltd.
Resumo:
Artificial satellites around the Earth can be temporarily captured by the Moon via gravitational mechanisms., How long the capture remains depends on the phase space region where the trajectory is located. This interval of time (capture time) ranges from less than one day (a single passage), up to 500 days, or even more. Orbits of longer times might be very useful for certain types of missions. The advantage of the ballistic capture is to save fuel consumption in an orbit transference from around the Earth to around the Moon. Some of the impulse needed in the transference is saved by the use of the gravitational forces involved. However, the time needed for the transference is elongated from days to months. In the present work we have mapped a significant part of the phase space of the Earth-Moon system, determining the length of the capture times and the origin of the trajectory, if it comes from the Earth direction, or from the opposite direction. Using such map we present a set of missions considering the utilization of the long capture times. (C) 2003 COSPAR. Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
This paper deals with a class of singularly perturbed reversible planar vector fields around the origin where the normal hyperbolicity assumption is not assumed. We exhibit conditions for the existence of infinitely many periodic orbits and hetero-clinic cycles converging to singular orbits with respect to the Hausdorf distance. In addition, generic normal forms of such singularities are presented.
Resumo:
A q-deformed analogue of zero-coupled nucleon pair states is constructed and the possibility of accounting for pairing correlations examined. For the single orbit case, the deformed pairs are found to be more strongly bound than the pairs with zero deformation, when a real-valued q parameter is used. It is found that an appropriately scaled deformation parameter reproduces the empirical few nucleon binding energies for nucleons in the 1f7/2 orbit and 1g9/2 orbit. The deformed pair Hamiltonian apparently accounts for many-body correlations, the strength of higher-order force terms being determined by the deformation parameter q. An extension to the multishell case, with deformed zero-coupled pairs distributed over several single particle orbits, has been realized. An analysis of calculated and experimental ground state energies and the energy spectra of three lowermost 0+ states, for even-A Ca isotopes, reveals that the deformation simulates the effective residual interaction to a large extent.
Resumo:
Trajectories of the planar, circular, restricted three-body problem are given in the configuration space through the caustics associated to the invariant tori of quasi-periodic orbits. It is shown that the caustics of trajectories librating in any particular resonance display some features associated to that resonance. This method can be considered complementary to the Poincare surface of section method, because it provides information not accessible by the other method.
Resumo:
We compute the semiclassical magnetization and susceptibility of non-interacting electrons, confined by a smooth two-dimensional potential and subjected to a uniform perpendicular magnetic field, in the general case when their classical motion is chaotic. It is demonstrated that the magnetization per particle m(B) is directly related to the staircase function N(E), which counts the single-particle levels up to energy E. Using Gutzwiller's trace formula for N, we derive a semiclassical expression for m. Our results show that the magnetization has a non-zero average, which arises from quantum corrections to the leading-order Weyl approximation to the mean staircase and which is independent of whether the classical motion is chaotic or not. Fluctuations about the average are due to classical periodic orbits and do represent a signature of chaos. This behaviour is confirmed by numerical computations for a specific system.
Resumo:
We study the dynamics of a class of reversible vector fields having eigenvalues (0, alphai, -alphai) around their symmetric equilibria. We give a complete list of all normal forms for such vector fields, their versal unfoldings, and the corresponding bifurcation diagrams of the codimensional-one case. We also obtain some important conclusions on the existence of homoclinic and heteroclinic orbits, invariant tori and symmetric periodic orbits.
Resumo:
In this paper singularly perturbed reversible vector fields defined in R-n without normal hyperbolicity conditions are discussed. The main results give conditions for the existence of infinitely many periodic orbits and heteroclinic cycles converging to singular orbits with respect to the Hausdorff distance.
Resumo:
An analytical approach for the spin stabilized satellite attitude propagation is presented using the non-singular canonical variables to describe the rotational motion. Two sets of variables were introduced for Fukushima in 1994 by a canonical transformation and they are useful when the angle between z-satellite axis of a coordinate system fixed in artificial satellite and the rotational angular momentum vector is zero or when the angle between Z-equatorial axis and rotation angular momentum vector is zero. Analytical solutions for rotational motion equations and torque-free motion are discussed in terms of the elliptic functions and by the application of some simplification to get an approximated solution. These solutions are compared with a numerical solution and the results show a good agreement for many rotation periods. When the mean Hamiltonian associated with the gravity gradient torque is included, an analytical solution is obtained by the application of the successive approximations' method for the satellite in an elliptical orbit. These solutions show that the magnitude of the rotation angular moment is not affected by the gravity gradient torque but this torque causes linear and periodic variations in the angular variables, long and short periodic variations in Z-equatorial component of the rotation angular moment and short periodic variations in x-satellite component of the rotation angular moment. The goal of this analysis is to emphasize the geometrical and physical meaning of the non-singular variables and to validate the approximated analytical solution for the rotational motion without elliptic functions for a non-symmetrical satellite. The analysis can be applied for spin stabilized satellite and in this case the general solution and the approximated solution are coincidence. Then the results can be used in analysis of the space mission of the Brazilian Satellites. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Gravitational capture is a characteristic of some dynamical systems in celestial mechanics, as in the elliptic restricted three-body problem that is considered in this paper. The basic idea is that a spacecraft (or any particle with negligible mass) can change a hyperbolic orbit with a small positive energy around a celestial body into an elliptic orbit with a small negative energy without the use of any propulsive system. The force responsible for this modification in the orbit of the spacecraft is the gravitational force of the third body involved in the dynamics. In this way, this force is used as a zero cost control, equivalent to a continuous thrust applied in the spacecraft. One of the most important applications of this property is the construction of trajectories to the Moon. The objective of the present paper is to study in some detail the effects of the eccentricity of the primaries in this maneuver.
Resumo:
The planar, circular, restricted three-body problem predicts the existence of periodic orbits around the Lagrangian equilibrium point L1. Considering the Earth-lunar-probe system, some of these orbits pass very close to the surfaces of the Earth and the Moon. These characteristics make it possible for these orbits, in spite of their instability, to be used in transfer maneuvers between Earth and lunar parking orbits. The main goal of this paper is to explore this scenario, adopting a more complex and realistic dynamical system, the four-body problem Sun-Earth-Moon-probe. We defined and investigated a set of paths, derived from the orbits around L1, which are capable of achieving transfer between low-altitude Earth (LEO) and lunar orbits, including high-inclination lunar orbits, at a low cost and with flight time between 13 and 15 days.