286 resultados para electrochemical impedance spectroscopy (EIS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrogen evolution reaction (HER) was studied on Ni-LaNi5 and Ni-MmNi(3.4)Co(0.8)Al(0.8) electrode materials in 1 mol dm(-3) NaOH solution. The steady-state polarization curves and electrochemical impedance spectroscopy experimental data showed a pronounced improvement in HER kinetics when these electrode materials were used. The electrochemical results are in accordance with the Volmer-Heyrovsky mechanism. The kinetic results indicate a more effective improvement in the Heyrovsky step, suggesting an electrocatalytic synergistic effect of the hyper-electronic character of the Ni and the hypo-electronic character of the rare-earth element on the electrode surface. (C) 2000 International Association for Hydrogen Energy. Published by Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results are presented on the mechanism of passivation of Co-Cr-Mo biological implant alloys in physiological serum using open circuit potentiometry, potentiodynamic curves, and electrochemical impedance spectroscopy. The potential dependence of impedance data and the analysis of the parameters obtained indicate a progressive diminution of the initial layer thickness and the simultaneous formation of a second higher resistive layer. In more severe conditions than the existent in human body, the metallographic examination of the alloy surface shows localized corrosion in interdendritric regions. Elemental analysis of the surface reveals the presence of higher chromium content in these regions. The presence of chlorine was not detected, which suggested that during preferential attack, soluble species are also formed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 2024-T3 and 7050-T7 aluminium alloys electrochemical behavior has been studied in NaCl 5% neutral solutions and 0,1M concentration containing NO 3 - or NO 2 -. The current job supports corrosion research on aluminium alloys used in aeronautic industry. Open circuit potential, polarisation curves and electrochemical impedance spectroscopy techniques have been used. In chloride solutions, alloys corrosion takes place through a pitting mechanism. Added anions to aerated solutions do not possess inhibition effect. In deaerated solutions, nitrite has diminished anodic dissolution rate, probably by incorporating this anion in the oxide and/or hydroxide film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work studied the influence of the rare earth (Ce3+ and Ce4+) elements concentration in polysiloxane flints deposited on copper by dip-coating process, and evaluated their resistance in a 3.5 wt.% NaCl medium. Classical electrochemistry techniques were used as open circuit potential, polarization curves and electrochemical impedance spectroscopy. The results revealed that by adding low concentration of Ce4+ ions, the coating prevents the electrolyte uptake any longer retarding the substrate degradation consequently. ©The Electrochemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Siloxane-polymethyl methacrylate hybrid films containing functionalized multiwall carbon nanotubes (CNTs) were deposited by dip-coating on carbon steel substrates from a sol prepared by radical polymerization of methyl methacrylate and 3-methacryloxy propyl-trimethoxysilane, followed by hydrolytic co-polycondensation of tetraethoxysilane. The correlation between the structural properties and corrosion protection efficiency was studied as a function of the molar ratio of nanotubes carbon to silicon, varied in the range between 0.1% and 5%. 29Si nuclear magnetic resonance and thermogravimetric measurements have shown that hybrids containing carbon nanotubes have a similar degree of polycondensation and thermal stability as the undoped matrix and exhibit and excellent adhesion to the substrate. Microscopy and X-ray photoelectron spectroscopy results revealed a very good dispersion of carbon nanotubes in the hybrid matrix and the presence of carboxylic groups allowing covalent bonding with the end-siloxane nodes. Potentiodynamic polarization curves and electrochemical impedance spectroscopy results demonstrate that CNTs containing coatings maintain the excellent corrosion protection efficiency of the hybrids, showing even a superior performance in acidic solution. The nanocomposite structure acts as efficient corrosion barrier, increasing the total impedance by 4 orders of magnitude and reducing the current densities by more than 3 orders of magnitude, compared to the bare steel electrode. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of ethanol, sulfuric acid and chloride on the corrosion resistance of 316L stainless steel was investigated by means of polarization curves and electrochemical impedance spectroscopy measurements. Over the studied range, the steel corrosion potential was independent of H2SO 4 and NaCl concentrations in aqueous solution. On the other hand, in solution containing 65 wt.% ethanol and 35 wt.% water, the corrosion potentials were higher than those obtained in aqueous solution. Besides, the steel corrosion potential was affected by the addition of H2SO4 and NaCl in solution. In solutions with and without ethanol, plus 0.35 wt.% NaCl, the presence of 1 wt.% H2SO4 inhibited the appearance of pitting corrosion. © 2013 Sociedade Brasileira de Química.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative dissolution of chalcopyrite at ambient temperatures is generally slow and subject to passivation, posing a major challenge for developing bioleaching applications for this recalcitrant mineral. Chloride is known to enhance the chemical leaching of chalcopyrite, but much of this effect has been demonstrated at elevated temperatures. This study was undertaken to test whether 100-200 mM Na-chloride enhances the chemical and bacterial leaching of chalcopyrite in shake flasks and stirred tank bioreactor conditions at mesophilic temperatures. Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and abiotic controls were employed for the leaching experiments. Addition of Na-chloride to the bioleaching suspension inhibited the formation of secondary phases from chalcopyrite and decreased the Fe(III) precipitation. Neither elemental S nor secondary Cu-sulfides were detected in solid residues by X-ray diffraction. Chalcopyrite leaching was enhanced when the solution contained bacteria, ferrous iron and Na-chloride under low redox potential (< 450 mV) conditions. Scanning electron micrographs and energy-dispersive analysis of X-rays revealed the presence of precipitates that were identified as brushite and jarosites in solid residues. Minor amounts of gypsum may also have been present. Electrochemical analysis of solid residues was in concurrence of the differential effects between chemical controls, chloride ions, and bacteria. Electrochemical impedance spectroscopy was used to characterize interfacial changes on chalcopyrite surface caused by different bioleaching conditions. In abiotic controls, the impedance signal stabilized after 28 days, indicating the lack of changes on mineral surface thereafter, but with more resistive behavior than chalcopyrite itself. For bioleached samples, the signal suggested some capacitive response with time owing to the formation of less conductive precipitates. At Bode-phase angle plots (middle frequency), a new time constant was observed that was associated with the formation of jarosite, possibly also with minor amount or elemental S, although this intermediate could not be verified by XRD. Real impedance vs. frequency plots indicated that the bioleaching continued to modify the chalcopyrite/solution interface even after 42 days. © 2013 The Authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)