245 resultados para Artificial Neural Net


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As análises de agrupamento e de componentes principais e as redes neurais artificiais foram utilizadas na determinação de padrões de comportamento das populações de macrófitas aquáticas que colonizaram o reservatório de Santana, Piraí-RJ, durante o ano de 2004. As análises de agrupamento dividiram o comportamento das populações durante o ano em dois grupos distintos, apresentando um padrão no primeiro semestre que difere daquele observado no segundo semestre do ano. A análise de componentes principais demonstrou que esse comportamento da comunidade (grupo de populações) é influenciado principalmente pelas espécies S. montevidensis, Heteranthera reniformis, Ludwigia sp., Rhynchospora aurea, C. iria, C. ferax e Aeschynomene denticulata no primeiro grupo e por Echinochloa polystachya, Polygonum lapathifolium, Alternanthera phyloxeroides, Pistia stratiotes, Eichhornia azurea, Brachiaria arrecta e Oxyscarium cubense no segundo grupo. As redes neurais artificiais agruparam as populações de macrófitas aquáticas em nove grupos, conforme sua densidade nos diferentes meses do ano. A aplicação da análise de componentes principais (ACP) nos valores de frequência das populações presentes nos primeiros três grupos de Kohonen permitiu discriminar três grupos de meses, cujas populações apresentaram características diferentes de colonização. A aplicação das redes neurais artificiais permitiu melhor discriminação dos meses e das espécies que compõem as comunidades correspondentes, quando utilizada a análise de componentes principais.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cutting analysis is a important and crucial task task to detect and prevent problems during the petroleum well drilling process. Several studies have been developed for drilling inspection, but none of them takes care about analysing the generated cutting at the vibrating shale shakers. Here we proposed a system to analyse the cutting's concentration at the vibrating shale shakers, which can indicate problems during the petroleum well drilling process, such that the collapse of the well borehole walls. Cutting's images are acquired and sent to the data analysis module, which has as the main goal to extract features and to classify frames according to one of three previously classes of cutting's volume. A collection of supervised classifiers were applied in order to allow comparisons about their accuracy and efficiency. We used the Optimum-Path Forest (OPF), Artificial Neural Network using Multi layer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC) for this task. The first one outperformed all the remaining classifiers. Recall that we are also the first to introduce the OPF classifier in this field of knowledge. Very good results show the robustness of the proposed system, which can be also integrated with other commonly system (Mud-Logging) in order to improve the last one's efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we described how a multidimensional wavelet neural networks based on Polynomial Powers of Sigmoid (PPS) can be constructed, trained and applied in image processing tasks. In this sense, a novel and uniform framework for face verification is presented. The framework is based on a family of PPS wavelets,generated from linear combination of the sigmoid functions, and can be considered appearance based in that features are extracted from the face image. The feature vectors are then subjected to subspace projection of PPS-wavelet. The design of PPS-wavelet neural networks is also discussed, which is seldom reported in the literature. The Stirling Universitys face database were used to generate the results. Our method has achieved 92 % of correct detection and 5 % of false detection rate on the database.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The advantages offered by the electronic component light emitting diode ( LED) have caused a quick and wide application of this device in replacement of incandescent lights. However, in its combined application, the relationship between the design variables and the desired effect or result is very complex and it becomes difficult to model by conventional techniques. This work consists of the development of a technique, through artificial neural networks, to make possible to obtain the luminous intensity values of brake lights using LEDs from design data. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The accurate identification of the nitrogen content in plants is extremely important since it involves economic aspects and environmental impacts, Several experimental tests have been carried out to obtain characteristics and parameters associated with the health of plants and its growing. The nitrogen content identification in plants involves a lot of non-linear parameters and complexes mathematical models. This paper describes a novel approach for identification of nitrogen content thought SPAD index using artificial neural networks (ANN). The network acts as identifier of relationships among, crop varieties, fertilizer treatments, type of leaf and nitrogen content in the plants (target). So, nitrogen content can be generalized and estimated and from an input parameter set. This approach can form the basis for development of an accurate real time system to predict nitrogen content in plants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Economic dispatch (ED) problems have recently been solved by artificial neural network approaches. Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. The ability of neural networks to realize some complex non-linear function makes them attractive for system optimization. All ED models solved by neural approaches described in the literature fail to represent the transmission system. Therefore, such procedures may calculate dispatch policies, which do not take into account important active power constraints. Another drawback pointed out in the literature is that some of the neural approaches fail to converge efficiently toward feasible equilibrium points. A modified Hopfield approach designed to solve ED problems with transmission system representation is presented in this paper. The transmission system is represented through linear load flow equations and constraints on active power flows. The internal parameters of such modified Hopfield networks are computed using the valid-subspace technique. These parameters guarantee the network convergence to feasible equilibrium points, which represent the solution for the ED problem. Simulation results and a sensitivity analysis involving IEEE 14-bus test system are presented to illustrate efficiency of the proposed approach. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes a novel approach for mapping lightning processes using fuzzy logic. The estimation process is carried out using a fuzzy system based on Sugeno's architecture. Simulation results confirm that proposed approach can be efficiently used in these types of problem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel approach for solving robust parameter estimation problems is presented for processes with unknown-but-bounded errors and uncertainties. An artificial neural network is developed to calculate a membership set for model parameters. Techniques of fuzzy logic control lead the network to its equilibrium points. Simulated examples are presented as an illustration of the proposed technique. The result represent a significant improvement over previously proposed methods. (C) 1999 IMACS/Elsevier B.V. B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes the application of computational intelligence techniques to assist complex problems concerning lightning in transformers. In order to estimate the currents related to lightning in a transformer, a neural tool is presented. ATP has generated the training vectors. The input variables used in Artificial Neural Networks (ANN) were the wave front time, the wave tail time, the voltage variation rate and the output variable is the maximum current in the secondary of the transformer. These parameters can define the behavior and severity of lightning. Based on these concepts and from the results obtained, it can be verified that the overvoltages at the secondary of transformer are also affected by the discharge waveform in a similar way to the primary side. By using the tool developed, the high voltage process in the distribution transformers can be mapped and estimated with more precision aiding the transformer project process, minimizing empirics and evaluation errors, and contributing to minimize the failure rate of transformers. (C) 2011 Elsevier Ltd. All rights reserved.