207 resultados para Heliocentric orbits
Resumo:
The lunar sphere of influence, whose radius is some 66,300 km, has regions of stable orbits around the Moon and also regions that contain trajectories which, after spending some time around the Moon, escape and are later recaptured by lunar gravity. Both the escape and the capture occur along the Lagrangian equilibrium points L1 and L2. In this study, we mapped out the region of lunar influence considering the restricted three-body Earth-Moon-particle problem and the four-body Sun-Earth-Moon-particle (probe) problem. We identified the stable trajectories, and the escape and capture trajectories through the L I and L2 in plots of the eccentricity versus the semi-major axis as a function of the time that the energy of the osculating lunar trajectory in the two-body Moon-particle problem remains negative. We also investigated the properties of these routes, giving special attention to the fact that they supply a natural mechanism for performing low-energy transfers between the Earth and the Moon, and can thus be useful on a great number of future missions. (C) 2007 Published by Elsevier Ltd on behalf of COSPAR.
Resumo:
The end magnets of the IFUSP race-track microtron booster, second stage of the electron accelerator under construction at the Linear Accelerator Laboratory, are presented. They deflect, focus and return the beam to the accelerating section. Details about the project are discussed, Poisson code was used to give the final geometry of the end magnets. The end magnets incorporate auxiliary pole pieces (clamps) which create a reverse fringe field region that avoids the beam vertical defocusing and reduces the horizontal displacement produced by extended fringe fields (EFF). The small gap height used for the clamps provided reverse field distributions with fringe fields of short extensions, avoiding the traditional use of inactive clamps. Measurements and calculations concerning particle trajectories and reverse field distribution are presented. The floating wire technique, employing an original procedure to register orbits, was used to corroborate the calculated beam trajectories and represents a good experimental option in the lack of the accelerator beam. The experimental results showed agreement of about 0.1% with the calculations.
Resumo:
In this work the problem of a spacecraft bi-impulsive transfer between two given non coplanar elliptical orbits, with minimum fuel consumption, is solved considering a non-Keplerian force field (the perturbing forces include Earth gravity harmonics and atmospheric drag). The problem is transformed in the Two Point Boundary Value Problem. It is developed and implemented a new algorithm, that uses the analytical expressions developed here. A dynamics that considered a Keplerian force field was used to produce an initial guess to solve the Two Point Boundary Value Problem. Several simulations were performed to observe the spacecraft orbital behaviour by different kind of perturbations and constraints, on a fuel consumption optimization point of view. (C) 2002 COSPAR. Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this paper we study codimension-one Hopf bifurcation from symmetric equilibrium points in reversible equivariant vector fields. Such bifurcations are characterized by a doubly degenerate pair of purely imaginary eigenvalues of the linearization of the vector field at the equilibrium point. The eigenvalue movements near such a degeneracy typically follow one of three scenarios: splitting (from two pairs of imaginary eigenvalues to a quadruplet on the complex plane), passing (on the imaginary axis), or crossing (a quadruplet crossing the imaginary axis). We give a complete description of the behaviour of reversible periodic orbits in the vicinity of such a bifurcation point. For non-reversible periodic solutions. in the case of Hopf bifurcation with crossing eigenvalues. we obtain a generalization of the equivariant Hopf Theorem.
Resumo:
We have used the Liapunov exponent to explore the phase space of a dynamical system. Considering the planar, circular restricted three-body problem for a mass ratio mu = 10(-3) (close to the Jupiter/Sun case), we have integrated similar to 16,000 starting conditions for orbits started interior to that of the perturber and we have estimated the maximum Liapunov characteristic exponent for each starting condition. Despite the fact that the integrations, in general, are for only a few thousand orbital periods of the secondary, a comparative analysis of the Liapunov exponents for various values of the 'cut-off' gives a good overview of the structure of the phase space. It provides information about the diffusion rates of the various chaotic regions, the location of the regular regions associated with primary resonances and even details such as the location of secondary resonances that produce chaotic regions inside the regular regions of primary resonances.
Resumo:
Since the Voyager flybys, embedded moonlets have been proposed to explain some of the surprising structures observed in Saturn's narrow F ring. Experiments conducted with the Cassini spacecraft support this suggestion. Images of the F ring show bright compact spots, and seven occultations of stars by the F ring, monitored by ultraviolet and infrared experiments, revealed nine events of high optical depth. These results point to a large number of such objects, but it is not clear whether they are solid moonlets or rather loose particle aggregates. Subsequent images suggested an irregular motion of these objects so that a determination of their orbits consistent with the F ring failed. Some of these features seem to cross the whole ring. Here we show that these observations are explained by chaos in the F ring driven mainly by the 'shepherd' moons Prometheus and Pandora. It is characterized by a rather short Lyapunov time of about a few hundred orbital periods. Despite this chaotic diffusion, more than 93 per cent of the F-ring bodies remain confined within the F ring because of the shepherding, but also because of a weak radial mobility contrasted by an effective longitudinal diffusion. This chaotic stirring of all bodies involved prevents the formation of 'propellers' typical of moonlets, but their frequent ring crossings explain the multiple radial 'streaks' seen in the F ring. The related 'thermal' motion causes more frequent collisions between all bodies which steadily replenish F-ring dust and allow for ongoing fragmentation and re-accretion processes (ring recycling).
Resumo:
In this paper, numerical simulations are made, using the three-dimensional restricted three-body problem as the mathematical model, to calculate the effects of a swing-by with the planet Saturn in the orbit of a comet. To show the results, the orbit of the comet is classified in four groups: elliptic direct, elliptic retrograde, hyperbolic direct and hyperbolic retrograde. Then, the modification in the orbit of the comet due to the close approach is shown in plots that specify from which group the comet's orbit is coming and to which group it is going. Several families of orbits are found and shown in detail. An analysis about the trends as parameters (position and velocity at the periapse) vary is performed and the influence of each of them is shown and explained. The result is a collection of maps that describe the evolution of the trajectory of the comet due to the close approach. Those maps can be used to estimate the probability of some events, like the capture or escape of a comet. An example of this technique is shown in the paper. (C) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this work we consider a one-dimensional quasilinear parabolic equation and we prove that the lap number of any solution cannot increase through orbits as the time passes if the initial data is a continuous function. We deal with the lap number functional as a Lyapunov function, and apply lap number properties to reach an understanding on the asymptotic behavior of a particular problem. (c) 2006 Published by Elsevier Ltd.
Resumo:
Artificial satellites around the Earth can be temporarily captured by the Moon via gravitational mechanisms., How long the capture remains depends on the phase space region where the trajectory is located. This interval of time (capture time) ranges from less than one day (a single passage), up to 500 days, or even more. Orbits of longer times might be very useful for certain types of missions. The advantage of the ballistic capture is to save fuel consumption in an orbit transference from around the Earth to around the Moon. Some of the impulse needed in the transference is saved by the use of the gravitational forces involved. However, the time needed for the transference is elongated from days to months. In the present work we have mapped a significant part of the phase space of the Earth-Moon system, determining the length of the capture times and the origin of the trajectory, if it comes from the Earth direction, or from the opposite direction. Using such map we present a set of missions considering the utilization of the long capture times. (C) 2003 COSPAR. Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
This paper deals with a class of singularly perturbed reversible planar vector fields around the origin where the normal hyperbolicity assumption is not assumed. We exhibit conditions for the existence of infinitely many periodic orbits and hetero-clinic cycles converging to singular orbits with respect to the Hausdorf distance. In addition, generic normal forms of such singularities are presented.
Resumo:
A q-deformed analogue of zero-coupled nucleon pair states is constructed and the possibility of accounting for pairing correlations examined. For the single orbit case, the deformed pairs are found to be more strongly bound than the pairs with zero deformation, when a real-valued q parameter is used. It is found that an appropriately scaled deformation parameter reproduces the empirical few nucleon binding energies for nucleons in the 1f7/2 orbit and 1g9/2 orbit. The deformed pair Hamiltonian apparently accounts for many-body correlations, the strength of higher-order force terms being determined by the deformation parameter q. An extension to the multishell case, with deformed zero-coupled pairs distributed over several single particle orbits, has been realized. An analysis of calculated and experimental ground state energies and the energy spectra of three lowermost 0+ states, for even-A Ca isotopes, reveals that the deformation simulates the effective residual interaction to a large extent.
Resumo:
Trajectories of the planar, circular, restricted three-body problem are given in the configuration space through the caustics associated to the invariant tori of quasi-periodic orbits. It is shown that the caustics of trajectories librating in any particular resonance display some features associated to that resonance. This method can be considered complementary to the Poincare surface of section method, because it provides information not accessible by the other method.
Resumo:
We compute the semiclassical magnetization and susceptibility of non-interacting electrons, confined by a smooth two-dimensional potential and subjected to a uniform perpendicular magnetic field, in the general case when their classical motion is chaotic. It is demonstrated that the magnetization per particle m(B) is directly related to the staircase function N(E), which counts the single-particle levels up to energy E. Using Gutzwiller's trace formula for N, we derive a semiclassical expression for m. Our results show that the magnetization has a non-zero average, which arises from quantum corrections to the leading-order Weyl approximation to the mean staircase and which is independent of whether the classical motion is chaotic or not. Fluctuations about the average are due to classical periodic orbits and do represent a signature of chaos. This behaviour is confirmed by numerical computations for a specific system.
Resumo:
We study the dynamics of a class of reversible vector fields having eigenvalues (0, alphai, -alphai) around their symmetric equilibria. We give a complete list of all normal forms for such vector fields, their versal unfoldings, and the corresponding bifurcation diagrams of the codimensional-one case. We also obtain some important conclusions on the existence of homoclinic and heteroclinic orbits, invariant tori and symmetric periodic orbits.
Resumo:
In this paper singularly perturbed reversible vector fields defined in R-n without normal hyperbolicity conditions are discussed. The main results give conditions for the existence of infinitely many periodic orbits and heteroclinic cycles converging to singular orbits with respect to the Hausdorff distance.