239 resultados para 1142
Resumo:
We analyze the behavior of solutions of nonlinear elliptic equations with nonlinear boundary conditions of type partial derivative u/partial derivative n + g( x, u) = 0 when the boundary of the domain varies very rapidly. We show that the limit boundary condition is given by partial derivative u/partial derivative n+gamma(x) g(x, u) = 0, where gamma(x) is a factor related to the oscillations of the boundary at point x. For the case where we have a Lipschitz deformation of the boundary,. is a bounded function and we show the convergence of the solutions in H-1 and C-alpha norms and the convergence of the eigenvalues and eigenfunctions of the linearization around the solutions. If, moreover, a solution of the limit problem is hyperbolic, then we show that the perturbed equation has one and only one solution nearby.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We present a prescription for light-cone gauge singularities which embeds in it causality and show that it results in simpler and less demanding integrals to be performed.
Resumo:
Making sure that causality be preserved by means of ''covariantizing'' the gauge-dependent singularity in the propagator of the vector potential A(mu)(x), we show that the evaluation of some basic one-loop light-cone integrals reproduce those results obtained through the Mandelstam-Leibbrandt prescription. Moreover, such a covariantization has the advantage of leading to simpler integrals to be performed in the cone variables (the bonus), although, of course, it introduces an additional alpha-parameter integral to be performed (the price to pay).
Resumo:
We consider flavor changing neutral current effects coming from the Z' exchange in 3-3-1 models. We show that the mass of this extra neutral vector boson may be less than 2 TeV and discuss the problem of quark family discrimination.
Resumo:
Sharp transitions are perhaps absent in QCD, so that one looks for physical quantities which may reflect the phase change. One such quantity is the sound velocity which was shown in lattice theory to become zero at the transition point for pure glue. We show that even in a simple bag model the sound velocity goes to zero at temperature T = T(v) not-equal 0 and that the numerical value of this T(v) depends on the nature of the meson. The average thermal energy of mesons goes linearly with T near T(v), with much smaller slope for the pion. The T(v) - s can be connected with the Boltzmann temperatures obtained from transverse momentum spectrum of these mesons in heavy-ion collision at mid-rapidity. It would be interesting to check the presence of different T(v) - s in present day finite T lattice theory.
Resumo:
We study the regularization ambiguities in an exact renormalized (1 + 1)-dimensional field theory. We show a relation between the regularization ambiguities and the coupling parameters of the theory as well as their role in the implementation of a local gauge symmetry at quantum level.
Resumo:
We studied the statistical distribution of student's performance, which is measured through their marks, in university entrance examination (Vestibular) of UNESP (Universidade Estadual Paulista) with respect to (i) period of study - day versus night period (ii) teaching conditions - private versus public school (iii) economical conditions - high versus low family income. We observed long ubiquitous power law tails in physical and biological sciences in all cases. The mean value increases with better study conditions followed by better teaching and economical conditions. In humanities, the distribution is close to normal distribution with very small tail. This indicates that these power law tails in science subjects axe due to the nature of the subjects themselves. Further and better study, teaching and economical conditions axe more important for physical and biological sciences in comparison to humanities at this level of study. We explain these statistical distributions through Gradually Truncated Power law distributions. We discuss the possible reason for this peculiar behavior.
Resumo:
In this study we describe the electrochemical behavior of 5,10,15,20-tetrakis(2'-aminophenylporphyrin)manganese(III) chloride supported on a glassy carbon electrode, as well as the electrochemical preparation and characterization of thin films based on pyrrole-3-carboxylic acid. The electrocatalytic action of the electrode modified with the Mn(III) porphyrin toward an azo dye was tested, and the characteristic strong interaction between the incorporated metalloporphyrin and RR120 dye was verified. Copyright (c) 2006 Society of Porphyrins & Phthalocyanines.
Resumo:
Toda lattice hierarchy and the associated matrix formulation of the 2M-boson KP hierarchies provide a framework for the Drinfeld-Sokolov reduction scheme realized through Hamiltonian action within the second KP Poisson bracket. By working with free currents, which Abelianize the second KP Hamiltonian structure, we are able to obtain a unified formalism for the reduced SL(M + 1, M - k) KdV hierarchies interpolating between the ordinary KP and KdV hierarchies. The corresponding Lax operators are given as superdeterminants of graded SL(M + 1, M - k) matrices in the diagonal gauge and we describe their bracket structure and field content. In particular, we provide explicit free field representations of the associated W(M, M - k) Poisson bracket algebras generalising the familiar nonlinear W-M+1 algebra. Discrete Backlund transformations for SL(M + 1, M - k) KdV are generated naturally from lattice translations in the underlying Toda-like hierarchy. As an application we demonstrate the equivalence of the two-matrix string model to the SL(M + 1, 1) KdV hierarchy.
Resumo:
Using the Langevin approach for stochastic processes, we study the renormalizability of the massive Thirring model. At finite fictitious time, we prove the absence of induced quadrilinear counterterms by verifying the cancellation of the divergencies of graphs with four external lines. This implies that the vanishing of the renormalization group beta function already occurs at finite times.
Resumo:
We consider the minimal chiral Schwinger model, by embedding the gauge non-invariant formulation into a gauge theory following the Batalin-Fradkin-Fradkina-Tyutin point of view. Within the BFFT procedure, the second-class constraints are converted into strongly involutive first-class ones, leading to an extended gauge-invariant formulation. We also show that, like the standard chiral model, in the minimal chiral model the Wess-Zumino action can be obtained by performing a q-number gauge transformation into the effective gauge non-invariant action.
Resumo:
In this article we show that for corank 1, quasi-homogeneous and finitely determined map germs f : (C-n, 0)-> (C-3, 0), n >= 3 one can obtain formulae for the polar multiplicities defined on the following stable types of f, f(Delta(f) and f(Sigma(n-2,1)(f), in terms of the weights and degrees of f. As a consequence we show how to compute the Euler obstruction of such stable types, also in terms of the weights and degrees of f.
Resumo:
A relativistic treatment of the deuteron and its observables based on a two-body Dirac (Breit) equation, with phenomenological interactions, associated to one-boson exchanges with cutoff masses, is presented. The 16-component wave function for the deuteron (J(pi) = 1+) solution contains four independent radial functions which obey a system of four coupled differential equations of first order. This radial system is numerically integrated, from infinity to the origin, by fixing the value of the deuteron binding energy and using appropriate boundary conditions at infinity. Specific examples of mixtures containing scalar, pseudoscalar and vector like terms are discussed in some detail and several observables of the deuteron are calculated. Our treatment differs from more conventional ones in that nonrelativistic reductions of the order c-2 are not used.