142 resultados para TRANSFORMER NONLINEAR MODEL
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper presents the control strategies of nonlinear vehicle suspension using a magnetorheological (MR) damper. We used two different approaches for modeling and control of the mechanical and electrical parts of the suspension systems with the MR damper. First, we have formulated and resolved the control problem in order to design the linear feedback dumping force controller for a nonlinear suspension system. Then the values of the control dumping force functions were transformed into electrical control signals by the application of a fuzzy logic control method. The numerical simulations were provided in order to show the effectiveness of this method for the semi-active control of the quarter-car suspension.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A non-twist Hamiltonian system perturbed by two waves with particular wave numbers can present Robust Tori, barriers created by the vanishing of the perturbing Hamiltonian at some defined positions. When Robust Tori exist, any trajectory in phase space passing close to them is blocked by emergent invariant curves that prevent the chaotic transport. We analyze the breaking up of the RT as well the transport dependence on the wave numbers and on the wave amplitudes. Moreover, we report the chaotic web formation in the phase space and how this pattern influences the transport.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, a loads transportation system in platforms or suspended by cables is considered. It is a monorail device and is modeled as an inverted pendulum built on a car driven by a dc motor the governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the dc motor and the dynamical system, that is, we have a so called nonideal periodic problem. The problem is analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, we also analyze the problem quantitatively using the Floquet multipliers technique. Finally, we devise a control for the studied nonideal problem. The method that was used for analysis and control of this nonideal periodic system is based on the Chebyshev polynomial exponsion, the Picard iterative method, and the Lyapunov-Floquet transformation (L-F transformation). We call it Sinha's theory.
Resumo:
Toda lattice hierarchy and the associated matrix formulation of the 2M-boson KP hierarchies provide a framework for the Drinfeld-Sokolov reduction scheme realized through Hamiltonian action within the second KP Poisson bracket. By working with free currents, which Abelianize the second KP Hamiltonian structure, we are able to obtain a unified formalism for the reduced SL(M + 1, M - k) KdV hierarchies interpolating between the ordinary KP and KdV hierarchies. The corresponding Lax operators are given as superdeterminants of graded SL(M + 1, M - k) matrices in the diagonal gauge and we describe their bracket structure and field content. In particular, we provide explicit free field representations of the associated W(M, M - k) Poisson bracket algebras generalising the familiar nonlinear W-M+1 algebra. Discrete Backlund transformations for SL(M + 1, M - k) KdV are generated naturally from lattice translations in the underlying Toda-like hierarchy. As an application we demonstrate the equivalence of the two-matrix string model to the SL(M + 1, 1) KdV hierarchy.
Resumo:
The Poisson-Boltzmann equation (PBE), with specific ion-surface interactions and a cell model, was used to calculate the electrostatic properties of aqueous solutions containing vesicles of ionic amphiphiles. Vesicles are assumed to be water- and ion-permeable hollow spheres and specific ion adsorption at the surfaces was calculated using a Volmer isotherm. We solved the PBE numerically for a range of amphiphile and salt concentrations (up to 0.1 M) and calculated co-ion and counterion distributions in the inside and outside of vesicles as well as the fields and electrical potentials. The calculations yield results that are consistent with measured values for vesicles of synthetic amphiphiles.
Resumo:
We study energy localization on the oscillator chain proposed by Peyrard and Bishop to model DNA. We search numerically for conditions with initial energy in a small subgroup of consecutive oscillators of a finite chain and such that the oscillation amplitude is small outside this subgroup on a long time scale. We use a localization criterion based on the information entropy and verify numerically that such localized excitations exist when the nonlinear dynamics of the subgroup oscillates with a frequency inside the reactive band of the linear chain. We predict a mimium value for the Morse parameter (mu>2.25) (the only parameter of our normalized model), in agreement with the numerical calculations (an estimate for the biological value is mu=6.3). For supercritical masses, we use canonical perturbation theory to expand the frequencies of the subgroup and we calculate an energy threshold in agreement with the numerical calculations.
Resumo:
An optimisation technique to solve transmission network expansion planning problem, using the AC model, is presented. This is a very complex mixed integer nonlinear programming problem. A constructive heuristic algorithm aimed at obtaining an excellent quality solution for this problem is presented. An interior point method is employed to solve nonlinear programming problems during the solution steps of the algorithm. Results of the tests, carried out with three electrical energy systems, show the capabilities of the method and also the viability of using the AC model to solve the problem.
Resumo:
This work presents a new three-phase transformer modeling suitable for simulations in Pspice environment, which until now represents the electrical characteristics of a real transformer. It is proposed the model comparison to a three-phase transformer modeling present in EMTP - ATP program, which includes the electrical and magnetic characteristics. In addition, a set including non-linear loads and a real three-phase transformer was prepared in order to compare and validate the results of this new proposed model. The three-phase Pspice transformer modeling, different from the conventional one using inductance coupling, is remarkable for its simplicity and ease in simulation process, since it uses available voltage and current sources present in Pspice program, enabling simulations of three-phase network system including the most common configuration, three wires in the primary side and four wires in the secondary side (three-phases and neutral). Finally, the proposed modeling becomes a powerful tool for three-phase network simulations due to its simplicity and accuracy, able to simulate and analyze harmonic flow in three-phase systems under balanced and unbalanced conditions.
Resumo:
The behavior of average velocities on a dissipative version of the classical bouncer model is described using scaling arguments. The description of the model is made by use of a two-dimensional nonlinear area contracting map. Our results reveal that the model experiences a transition from limited to unlimited energy growth as the dissipation vanishes. (c) 2007 Elsevier B.V. All rights reserved.