135 resultados para Adjoint boundary conditions
Resumo:
Ablation is a thermal protection process with several applications in engineering, mainly in the field of airspace industry. The use of conventional materials must be quite restricted, because they would suffer catastrophic flaws due to thermal degradation of their structures. However, the same materials can be quite suitable once being protected by well-known ablative materials. The process that involves the ablative phenomena is complex, could involve the whole or partial loss of material that is sacrificed for absorption of energy. The analysis of the ablative process in a blunt body with revolution geometry will be made on the stagnation point area that can be simplified as a one-dimensional plane plate problem, hi this work the Generalized Integral Transform Technique (GITT) is employed for the solution of the non-linear system of coupled partial differential equations that model the phenomena. The solution of the problem is obtained by transforming the non-linear partial differential equation system to a system of coupled first order ordinary differential equations and then solving it by using well-established numerical routines. The results of interest such as the temperature field, the depth and the rate of removal of the ablative material are presented and compared with those ones available in the open literature.
Resumo:
The shape modes of a damped-free beam model with a tip rotor are determined by using a dynamical basis that is generated by a fundamental spatial free response. This is a non-classical distributed model for the displacements in the transverse directions of the beam which turns out to be coupled through boundary conditions due to rotation. Numerical calculations are performed by using the Ritz-Rayleigh method with several approximating basis.
Resumo:
The pressure field of a high-power klystron amplifier in the cathode and anode region was investigated. The investigation was performed using a 1.3 GHz, 100 A and 240 kV high-power klystron with five reentrant coaxial cavities, assembled in cylindrical drift tube 1.2 m long. The diffusion equation in mathematical model was also solved by using a 3-D finite element method code, in order to obtain pressure profile in region of interest. The results show that density profile of molecules between cathode-anode region was determined, where cathode pressure is approximately 10% higher than anode pressure.
Resumo:
Laminar-forced convection inside tubes of various cross-section shapes is of interest in the design of a low Reynolds number heat exchanger apparatus. Heat transfer to thermally developing, hydrodynamically developed forced convection inside tubes of simple geometries such as a circular tube, parallel plate, or annular duct has been well studied in the literature and documented in various books, but for elliptical duct there are not much work done. The main assumptions used in this work are a non-Newtonian fluid, laminar flow, constant physical properties, and negligible axial heat diffusion (high Peclet number). Most of the previous research in elliptical ducts deal mainly with aspects of fully developed laminar flow forced convection, such as velocity profile, maximum velocity, pressure drop, and heat transfer quantities. In this work, we examine heat transfer in a hydrodynamically developed, thermally developing laminar forced convection flow of fluid inside an elliptical tube under a second kind of a boundary condition. To solve the thermally developing problem, we use the generalized integral transform technique (GITT), also known as Sturm-Liouville transform. Actually, such an integral transform is a generalization of the finite Fourier transform, where the sine and cosine functions are replaced by more general sets of orthogonal functions. The axes are algebraically transformed from the Cartesian coordinate system to the elliptical coordinate system in order to avoid the irregular shape of the elliptical duct wall. The GITT is then applied to transform and solve the problem and to obtain the once unknown temperature field. Afterward, it is possible to compute and present the quantities of practical interest, such as the bulk fluid temperature, the local Nusselt number, and the average Nusselt number for various cross-section aspect ratios.
Resumo:
This paper reports the construction of an axisymmetric nonpremixed piloted jet burner, with well-defined initial and boundary conditions, known as the Delft burner, to assess turbulence-chemistry interaction in non-premixed turbulent flames. Detailed experimental information is described, involving hot-wire anemometry, thin-wire thermocouples and chemiluminescence visualization measurements. Radial profile of the axial mean velocity indicates excellent agreement between flow patterns developed within Delft installation and the one described herein. Chemiluminescence emissions from CH and C2 free-radicals were acquired with a CCD camera. Tomography reconstruction analysis was utilised to compare radical emissions and temperature spatial distributions. There was a strong dependence between temperature and CH/C 2 emissions. This is an indication that these radicals can be used in flame front studies.
Resumo:
This work presents and describes in detail the pressure profile in a conical tube with the unavoidable steady-state outgassing, plus a transient gas source, like, for instance, in an accelerator, when particles from the beam hit the walls. Mathematical and physical formulations are given and detailed; specific conductance, specific throughput and a detailed discussion about the boundary conditions are presented. These concepts and approach are applied to usual realistic cases, such as conical tubes, with typical laboratory dimensions. © 2005 IEEE.
Resumo:
We describe and begin to evaluate a parameterization to include the vertical transport of hot gases and particles emitted from biomass burning in low resolution atmospheric-chemistry transport models. This sub-grid transport mechanism is simulated by embedding a 1-D cloud-resolving model with appropriate lower boundary conditions in each column of the 3-D host model. Through assimilation of remote sensing fire products, we recognize which columns have fires. Using a land use dataset appropriate fire properties are selected. The host model provides the environmental conditions, allowing the plume rise to be simulated explicitly. The derived height of the plume is then used in the source emission field of the host model to determine the effective injection height, releasing the material emitted during the flaming phase at this height. Model results are compared with CO aircraft profiles from an Amazon basin field campaign and with satellite data, showing the huge impact that this mechanism has on model performance. We also show the relative role of each main vertical transport mechanisms, shallow and deep moist convection and the pyro-convection (dry or moist) induced by vegetation fires, on the distribution of biomass burning CO emissions in the troposphere.
Resumo:
We study an ultracold and dilute superfluid Bose-Fermi mixture confined in a strictly one-dimensional (1D) atomic waveguide by using a set of coupled nonlinear mean-field equations obtained from the Lieb-Liniger energy density for bosons and the Gaudin-Yang energy density for fermions. We consider a finite Bose-Fermi interatomic strength gbf and both periodic and open boundary conditions. We find that with periodic boundary conditions-i.e., in a quasi-1D ring-a uniform Bose-Fermi mixture is stable only with a large fermionic density. We predict that at small fermionic densities the ground state of the system displays demixing if gbf >0 and may become a localized Bose-Fermi bright soliton for gbf <0. Finally, we show, using variational and numerical solutions of the mean-field equations, that with open boundary conditions-i.e., in a quasi-1D cylinder-the Bose-Fermi bright soliton is the unique ground state of the system with a finite number of particles, which could exhibit a partial mixing-demixing transition. In this case the bright solitons are demonstrated to be dynamically stable. The experimental realization of these Bose-Fermi bright solitons seems possible with present setups. © 2007 The American Physical Society.
Resumo:
Following the Dirac's technique for constrained systems we performed a detailed analysis of the constraint structure of Podolsky's electromagnetic theory on the null-plane coordinates. The null plane gauge condition was extended to second order theories and appropriate boundary conditions were imposed to guarantee the uniqueness of the inverse of the constraints matrix of the system. Finally, we determined the generalized Dirac brackets of the independent dynamical variables. © 2010 American Institute of Physics.
Resumo:
The dynamics of the AFM-atomic force microscope follows a model based in a Timoshenko cantilever beam with a tip attached at the free end and acting with the surface of a sample. General boundary conditions arise when the tip is either in contact or non-contact with the surface. The governing equations are given in matrix conservative form subject to localized loads. The eigenanalysis is done with a fundamental matrix response of a damped second-order matrix differential equation. Forced responses are found by using a Galerkin approximation of the matrix impulse response. Simulations results with harmonic and pulse forcing show the filtering character and the effects of the tip-sample interaction at the end of the beam. © 2012 American Institute of Physics.
Resumo:
In this work we analyze the convergence of solutions of the Poisson equation with Neumann boundary conditions in a two-dimensional thin domain with highly oscillatory behavior. We consider the case where the height of the domain, amplitude and period of the oscillations are all of the same order, and given by a small parameter e > 0. Using an appropriate corrector approach, we show strong convergence and give error estimates when we replace the original solutions by the first-order expansion through the Multiple-Scale Method.
Local attractors, degeneracy and analyticity: Symmetry effects on the locally coupled Kuramoto model
Resumo:
In this work we study the local coupled Kuramoto model with periodic boundary conditions. Our main objective is to show how analytical solutions may be obtained from symmetry assumptions, and while we proceed on our endeavor we show apart from the existence of local attractors, some unexpected features resulting from the symmetry properties, such as intermittent and chaotic period phase slips, degeneracy of stable solutions and double bifurcation composition. As a result of our analysis, we show that stable fixed points in the synchronized region may be obtained with just a small amount of the existent solutions, and for a class of natural frequencies configuration we show analytical expressions for the critical synchronization coupling as a function of the number of oscillators, both exact and asymptotic. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this work we develop the Hamilton - Jacobi formalism to study the Podolsky electromagnetic theory on the null-plane coordinates. We calculate the generators of the Podolsky theory and check the integrability conditions. Appropriate boundary conditions are introduced to assure uniqueness of the Green functions associated to the differential operators. Non-involutive constraints in the Hamilton-Jacobi formalism are eliminated by constructing their respective generalized brackets. © 2013 American Institute of Physics.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)