80 resultados para coating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work studied the influence of the rare earth (Ce3+ and Ce4+) elements concentration in polysiloxane flints deposited on copper by dip-coating process, and evaluated their resistance in a 3.5 wt.% NaCl medium. Classical electrochemistry techniques were used as open circuit potential, polarization curves and electrochemical impedance spectroscopy. The results revealed that by adding low concentration of Ce4+ ions, the coating prevents the electrolyte uptake any longer retarding the substrate degradation consequently. ©The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shellac is a natural resin used for the preservation of fruits, bones and as a coating on drugs. The hydroxyapatite (HA), which is naturally found in human bones, is used as filler to substitute amputated bone or as a coating for prosthetics, promoting bone growth in implants of prostheses. The objective of this work is to immobilize HA from an alcoholic solution of shellac on plates of titanium, niobium and AISI 316L steel using the simple dip-coating method. The corrosion resistance of the uncoated films is compared with ones coated with shellac and shellac plus HA. The deterioration of the film composed of shellac with hydroxyapatite in saline solution follows the ascending order: AISI 316L steel, titanium, niobium. The elemental analysis of the shellac showed that it mainly consists of the elements C, H, N and O. We used the FT-IR spectrum to characterize the shellac and HA. ©The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium and its alloys are widely used as biomaterials due to their mechanical, chemical and biological properties. To enhance the biocompatibility of titanium alloys, various surface treatments have been proposed. In particular, the formation of titanium oxide nanotubes layers has been extensively examined. Among the various materials for implants, calcium phosphates and hydroxyapatite are widely used clinically. In this work, titanium nanotubes were fabricated on the surface of Ti-7.5Mo alloy by anodization. The samples were anodized for 20 V in an electrolyte containing glycerol in combination with ammonium fluoride (NH4F, 0.25%), and the anodization time was 24 h. After being anodized, specimens were heat treated at 450 °C and 600°C for 1 h to crystallize the amorphous TiO2 nanotubes and then treated with NaOH solution to make them bioactive, to induce growth of calcium phosphate in a simulated body fluid. Surface morphology and coating chemistry were obtained respectively using, field-emission scanning electron microscopy (FEG-SEM), AFM and X-ray diffraction (XRD). It was shown that the presence of titanium nanotubes induces the growth of a sodium titanate nanolayer. During the subsequent invitro immersion in a simulated body fluid, the sodium titanate nanolayer induced the nucleation and growth of nano-dimensioned calcium phosphate. It was possible to observe the formation of TiO2 nanotubes on the surface of Ti-7.5Mo. Calcium phosphate coating was greater in the samples with larger nanotube diameter. These findings represent a simple surface treatment for Ti-7.5Mo alloy that has high potential for biomedical applications. © (2013) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To investigate and compare the biocompatibility of two types of Ferrara intracorneal ring segment: with and without chondroitin sulfate coating by clinical and histopathological evaluation. METHODS: A randomized experimental study was carried out on thirty right-eye corneas from 30 Norfolk albino rabbits allocated into two experimental groups: Group G1 - implanted with Ferrara intracorneal ring segment without coating (FICRS) and Group G2 - implanted with Ferrara intracorneal ring segment with chondroitin sulfate coating (FICRS-CS). Left eyes formed the control group. Clinical parameters analyzed were: presence of edema, vascularization, infection and ring extrusion one, 30, and 60 days after surgery. Histopathological parameters analyzed were: number of corneal epithelial layers over and adjacent to the ring, presence of spongiosis, hydropic degeneration, basement membrane thinning, inflammatory cells, neovascularization and pseudocapsule formation. RESULTS: At clinical examination 60 days after implant, edema, vascularization and extrusion were observed respectively in 20%, 26.7%, 6.7% of FICRS corneas and in 6.7%, 6.7%, and 0% of FICRS-CS corneas. Histopathological evaluation showed epithelial-layer reduction from 5 (5;6) to 3 (3;3) with FICRS and from 5 (5;5) to 4 (3;5) with FICRS-CS in the region over the ring. Epithelial spongiosis, hydropic degeneration, and basement membrane thinning were present in 69.2%, 53.8%, and 69.2% of FICRS and in 73.3%, 73.3%, and 46.7% with FICRS-CS, respectively. Vascularization was present in 38.5% of FICRS and 13.3% with FICRS-CS, inflammatory cells in 75% of FICRS and 33.3% with FICRS-CS, and pseudocapsule in 66.7% of FICRS and 93.3% with FICRS-CS. Giant cells occurred only in the FICRS-CS group (20%). CONCLUSION: Ferrara intracorneal rings coated with chondroitin sulfate (FICRS-CS) caused lower frequency of clinical and histopathological alterations than Ferrara intracorneal rings without the coating (FICRS), demonstrating higher biocompatibility of the FICRS-CS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0-14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was nondecalcified histologic analysis of titanium implants modified by laser with and without hydroxyapatite. Implants with three modified surfaces were inserted into rabbit tibias: group 1, machined surface; group 2, irradiated (laser); and group 3, irradiated and hydroxyapatite coated (biomimetic method). The mean surface roughness (Ra) scores of groups 2 and 3 were higher than that of group 1. Bone-implant contact measurements at 30 and 60 days for groups 2 and 3 were higher than for group 1. Bone area at 30 and 60 days for group 2 was higher than for groups 1 and 3. Titanium implants modified by laser with and without hydroxyapatite exhibit increased early osseointegration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural component failures due to cyclic loading are associated to surface damage of materials and its interaction with environment. Fatigue failure occurs with stresses below the yield strength of each material and is a result of crack initiation and propagation. In aeronautical components is an important parameter to be considered in project, as well as the corrosion and wear resistance. Thermally sprayed HVOF coatings have been considered to replace galvanic chromium deposits with comparable performance for wear and corrosion resistance. The aim of present research is to study the influence of WC-13Co-4Cr applied by HVOF, on the axial fatigue strength of 15-5 PH stainless steel. The shot peening treatment was used to restore fatigue performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)