102 resultados para Tension Leg Platform (Tlp)
Resumo:
Virtual platforms are of paramount importance for design space exploration and their usage in early software development and verification is crucial. In particular, enabling accurate and fast simulation is specially useful, but such features are usually conflicting and tradeoffs have to be made. In this paper we describe how we integrated TLM communication mechanisms into a state-of-the-art, cycle-accurate, MPSoC simulation platform. More specifically, we show how we adapted ArchC fast functional instruction set simulators to the MPARM platform in order to achieve both fast simulation speed and accuracy. Our implementation led to a much faster hybrid platform, reaching speedups of up to 2.9 and 2.1x on average with negligible impact on power estimation accuracy (average 3.26% and 2.25% of standard deviation). © 2011 IEEE.
Resumo:
The Space Vector PWM implementation and operation for a Four-leg Voltage Source Inverter (VSI) is detailed and discussed in this paper. Although less common, four-leg VSIs are a viable solution for situations where neutral connection is necessary, including Active Power Filter applications. This topology presents advantages regarding the VSI DC link and capacitance, which make it useful for high power devices. Theory, implementation and simulations are also discussed in this paper. © 2011 IEEE.
Resumo:
A current trend in the agricultural area is the development of mobile robots and autonomous vehicles for precision agriculture (PA). One of the major challenges in the design of these robots is the development of the electronic architecture for the control of the devices. In a joint project among research institutions and a private company in Brazil a multifunctional robotic platform for information acquisition in PA is being designed. This platform has as main characteristics four-wheel propulsion and independent steering, adjustable width, span of 1,80m in height, diesel engine, hydraulic system, and a CAN-based networked control system (NCS). This paper presents a NCS solution for the platform guidance by the four-wheel hydraulic steering distributed control. The control strategy, centered on the robot manipulators control theory, is based on the difference between the desired and actual position and considering the angular speed of the wheels. The results demonstrate that the NCS was simple and efficient, providing suitable steering performance for the platform guidance. Even though the simplicity of the NCS solution developed, it also overcame some verified control challenges in the robot guidance system design such as the hydraulic system delay, nonlinearities in the steering actuators, and inertia in the steering system due the friction of different terrains. Copyright © 2012 Eduardo Pacincia Godoy et al.
Resumo:
This experiment evaluated the growth of breast and leg muscle fibers of domestic fowl raised in two enclosure sizes (SE: Small Enclosure, 1.125 m2/10 birds; LE: Large Enclosure, 5.25 m2/10 birds). In breast muscles, the number of fibers per area decreased over time and higher values were observed in broilers housed in SE compared to LE. The fiber size increased with age and was greater in LE than SE at 56 days of age, suggesting greater hypertrophic growth of fibers in breast muscle for broilers maintained in LE. In leg muscles, the muscle cross-sectional area was greater for broilers raised in LE than SE at 56 days of age and decreased from 42 to 56 days of age in broilers raised in SE, suggesting leg muscle atrophy in these birds. The Fast Glycolytic (FG), Fast Oxidative-Glycolytic (FOG) and Slow Oxidative (SO) fibers grew until 42 days of age in both enclosure sizes. The area of FOG fibers was greater in broilers raised in LE than those in SE at 28 and 56 days of age; in LE-raised broilers, the SO area was greater at 28, 42 and 56 days of age, suggesting that the muscles of broilers housed in LE are more oxidative. The BW gain was greater for broilers raised in LE than SE, whereas BW, feed intake and feed conversion were not influenced by enclosure size. Thus, the enclosure space affected hypertrophic growth and metabolic characteristics of breast and leg muscle fibers. © Asian Network for Scientific Information, 2012.
Resumo:
Purpose: To evaluate the stress distribution in peri-implant bone by simulating the effect of an implant with microthreads and platform switching on angled abutments through tridimensional finite element analysis. The postulated hypothesis was that the presence of microthreads and platform switching would reduce the stress concentration in the cortical bone. Methods: Four mathematical models of a central incisor supported by an implant (5.0mm×13mm) were created in which the type of thread surface in the neck portion (microthreaded or smooth) and the diameter of the angled abutment connection (5.0 and 4.1mm) were varied. These models included the RM (regular platform and microthreads), the RS (regular platform and smooth neck surface), the SM (platform switching and microthreads), and the SS (platform switching and smooth neck). The analysis was performed using ANSYS Workbench 10.0 (Swanson Analysis System). An oblique load (100N) was applied to the palatine surface of the central incisor. The bone/implant interface was considered to be perfectly integrated. Values for the maximum (σmax) and minimum (σmin) principal stress, the equivalent von Mises stress (σvM), and the maximum principal elastic strain (e{open}max) for cortical and trabecular bone were obtained. Results: For the cortical bone, the highest σmax (MPa) were observed for the RM (55.1), the RS (51.0), the SM (49.5), and the SS (44.8) models. The highest σvM (MPa) were found for the RM (45.4), the SM (42.1), the RS (38.7), and the SS models (37). The highest values for σmin were found for the RM, SM, RS and SS models. For the trabecular bone, the highest σmax values (MPa) were observed in the RS model (6.55), followed by the RM (6.37), SS (5.6), and SM (5.2) models. Conclusion: The hypothesis that the presence of microthreads and a switching platform would reduce the stress concentration in the cortical bone was partially rejected, mainly because the microthreads increased the stress concentration in cortical bone. Only platform switching reduced the stress in cortical bone. © 2012 Japan Prosthodontic Society.
Resumo:
To date, different techniques of navigation for mobile robots have been developed. However, the experimentation of these techniques is not a trivial task because usually it is not possible to reuse the developed control software due to system incompabilities. This paper proposes a software platform that provides means for creating reusable software modules through the standardization of software interfaces, which represent the various robot modules. © 2012 ICROS.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to evaluate stress distribution of the peri-implant bone by simulating the biomechanical influence of implants with different diameters of regular or platform switched connections by means of 3-dimensional finite element analysis. Five mathematical models of an implant-supported central incisor were created by varying the diameter (5.5 and 4.5 mm, internal hexagon) and abutment platform (regular and platform switched). For the cortical bone, the highest stress values (rmax and rvm) were observed in situation R1, followed by situations S1, R2, S3, and S2. For the trabecular bone, the highest stress values (rmax) were observed in situation S3, followed by situations R1, S1, R2, and S2. The influence of platform switching was more evident for cortical bone than for trabecular bone and was mainly seen in large platform diameter reduction.
Resumo:
Objective: To evaluate the influence of the configuration of the marginal aspect of implants placed immediately into extraction sockets on peri-implant hard tissue adaptation. Material and methods: In 6 Labrador dogs, endodontic treatments of the mesial roots of 1M1 were performed and the distal roots were removed. 2P2 was extracted as well. Implants were immediately placed in the center of the distal alveoli. Cylindrical straight implants were installed in the right side of the mandible (Control), while, in the left side, implants with a reduced diameter in the coronal portion, yielding an indentation in the surface continuity (Test), were installed. Cover screws were affixed, and the flaps were sutured to allow non-submerged healing. After 4 months of healing, histological slides were obtained for assessments. Results: A buccal resorption of 1.58 ± 1.28 and 1.90 ± 1.93 mm at the control and of 0.26 ± 0.90 and 0.14 ± 0.66 mm at the test sites was observed at the premolar and molar regions, respectively. The buccal coronal level of osseointegration was located apically to the margin of the smooth/rough surface border by 2.40 ± 0.90 and 3.70 ± 0.87 mm at the control sites and 1.19 ± 0.45 and 2.16 ± 0.96 mm at the test sites at the premolar and molar sites, respectively. All differences yielded statistical significance. Conclusions: The use of implants with a reduced diameter in their coronal aspect may contribute to preservation of the buccal bony crest in a more coronal level compared with conventional implants. Thus, the study confirmed the efficacy of the platform switching concept. © 2013 John Wiley & Sons A/S.
Resumo:
The purpose of this study was to quantify energy expenditure (EE) during multiple sets of leg press (LP) and bench press (BP) exercises in 10 males with at least 1 yr of resistance training (RT). The subjects underwent two sessions to determine 1 repetition maximum (1RM) on the BP and LP and one protocol consisting of a warm up and 4 sets for 10 repetitions at 70% 1RM with a 3-min rest period between sets for each exercise. Energy expenditure was calculated as the sum of oxygen uptake (aerobic component), EPOC, and lactate production (anaerobic component). There were no significant differences in EE between exercises for sets 1 to 4 and the total energy expended. However, statistical analysis revealed a significant difference (P<0.05) between exercises in RT economy (BP, 0.0206 ± 0.0044 kcal·kg-1 vs. LP, 0.0051 ± 0.0015 kcal·kg-1). Within exercise comparison showed set 4 was significantly different from sets 1 and 3 for BP, and for LP a significant difference was found between set 4 and sets 1, 2 and 3. Our results point to an increase in EE during multiple sets at 70% 1RM and show that in spite of the difference in muscle mass involved and total work done during each type of exercise, EE was not different due to greater economy during the LP.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC