140 resultados para Structural phase transition
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This letter reports microwave dielectric measurements performed in the antiferroelectric phase of NaNbO3 ceramics from 100 to 450 K. Remarkable dielectric relaxation was found within the antiferroelectric phase and in the vicinity of the ferroelectric-antiferroelectric phase transition. Such dielectric relaxation process was associated with relaxations of polar nanoregions with strong relaxor-like characteristic. In addition, the microwave dielectric measurements also revealed an unexpected and unusual anomaly in the relaxation strength, which was related to a disruption of the antiferroelectric order induced by a possible AFE-AFE phase transition. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Structural effects of lithium additive on 0.9PMN-0.1PT powders prepared by Ti-modified columbite route were studied. The substitution of Li+ ions for Mg2+ ions in the B-site sub-lattice of 0.9PMN-0.1PT perovskite structure was explained in terms of lead and oxygen vacancies generation originated as consequence of the ionic compensation of negatively charged Li'(Mg) sites. The rise in mass transport as consequence of the increasing of Pb2+ and O2- vacancies produces more agglomerated particles during the powder synthesis and changes the mechanical characteristics between grain and grain boundary of sintered ceramic. The relation between K-m and T-m values, the difference between ionic radii of B cation and the molar volume were used to explain the changes in the relaxor behavior and diffusiveness of phase transition as function of lithium doping, which are corroborated by the results obtained through the ferroelectric characterization.
Resumo:
We have investigated the effect of mixing spontaneously formed dispersions of the cationic vesicle-forming dioctadecyldimethylammonium chloride and bromide (DODAX, with X being anions Cl- (C) or Br- (B)) with solutions of the micelle-forming nonionic ethylene oxide surfactants penta-, hepta-, and octaethyleneglycol mono-n-dodecyl ether, C12En (n = 5, 7, and 8), and the zwitterionic 3-(N-hexadecyl-N,N-dimethylammonio)propane sulfonate (HPS). We used for this purpose differential scanning calorimetry (DSC), turbidity, and steady-state fluorescence spectroscopy to investigate the vesicle-micelle (V-M) transition yielded by adding C12En and HPS to 1.0 mM vesicle dispersions of DODAC and DODAB. The addition of these surfactants lowers the gel-to-liquid crystalline phase transition temperature (T-m) of DODAC and DODAB, and the transition becomes less cooperative, that is, the thermogram transition peak shifts to lower temperature and broadens to disappear when the V-M transition is complete, the vesicle bilayer becomes less organized, and the T., decreases, in agreement with measurements of the fluorescence quantum yield of trans-diphenylpolyene (t-DPO) fluorescence molecules incorporated in the vesicle bilayer. Turbidity data indicate that the V-M transition comes about in three stages: first surfactants are solubilized into the vesicle bilayer; after saturation, the vesicles are ruptured, and, finally, the vesicles are completely solubilized and only mixed micelles are formed. The critical points of bilayer saturation and vesicle solubilization were obtained from the turbidity and fluorescence curves, and are reported in this communication. The solubility of DODAX is stronger for C12En than it is for HPS, meaning that C12En solubilizes DODAX more efficiently than does HPS. The surfactant solubilization depends slightly on the counterion, and varies according to the sequence C12E5 > C12E7 > C12E8 > HPS.
Resumo:
We establish universal behaviour in the temperature dependencies of some observables in (s + id)-wave BCS superconductivity in the presence of a weak a wave. We find also a second second-order phase transition. As temperature is lowered-past the usual critical temperature T-c, a less ordered superconducting phase is created in the d wave, which changes to a more ordered phase in a (s + id) wave at T-c1 (
Resumo:
We study numerically the temperature dependencies of specific heat, susceptibility, penetration depth, and thermal conductivity of a coupled (d(x2-y2) + is)-wave Bardeen-Cooper-Schrieffer (BCS) superconductor in the presence of a weak s-wave component (1) on square lattice and (2) on a lattice with orthorhombic distortion. As the temperature is lowered past the critical temperature T-c, a less ordered superconducting phase is created in d(x2-y2) wave, which changes to a more ordered phase in (d(x2-y2) + is) wave at T-c1. This manifests in two second-order phase transitions. The two phase transitions are identified by two jumps in specific heat at T-c and T-c1. The temperature dependencies of the superconducting observables exhibit a change from power-law to exponential behavior as temperature is lowered below T-c1 and confirm the new phase transition. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
We consider the Euclidean D-dimensional -lambda vertical bar phi vertical bar(4)+eta vertical bar rho vertical bar(6) (lambda,eta > 0) model with d (d <= D) compactified dimensions. Introducing temperature by means of the Ginzburg-Landau prescription in the mass term of the Hamiltonian, this model can be interpreted as describing a first-order phase transition for a system in a region of the D-dimensional space, limited by d pairs of parallel planes, orthogonal to the coordinates axis x(1), x(2),..., x(d). The planes in each pair are separated by distances L-1, L-2, ... , L-d. We obtain an expression for the transition temperature as a function of the size of the system, T-c({L-i}), i = 1, 2, ..., d. For D = 3 we particularize this formula, taking L-1 = L-2 = ... = L-d = L for the physically interesting cases d = 1 (a film), d = 2 (an infinitely long wire having a square cross-section), and for d = 3 (a cube). For completeness, the corresponding formulas for second-order transitions are also presented. Comparison with experimental data for superconducting films and wires shows qualitative agreement with our theoretical expressions.
Resumo:
We consider the modification of the Cahn-Hilliard equation when a time delay process through a memory function is taken into account. We then study the process of spinodal decomposition in fast phase transitions associated with a conserved order parameter. Finite-time memory effects are seen to affect the dynamics of phase transition at short times and have the effect of delaying, in a significant way, the process of rapid growth of the order parameter that follows a quench into the spinodal region. These effects are important in several systems characterized by fast processes, like non-equilibrium dynamics in the early universe and in relativistic heavy-ion collisions. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Inspired by analytic results obtained for a systematic expansion of the memory kernel in dissipative quantum mechanics, we propose a phenomenological procedure to incorporate non-markovian corrections to the Langevin dynamics of an order parameter in field theory systematically. In this note, we restrict our analysis to the onset of the evolution. As an example, we consider the process of phase conversion in the chiral transition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)