148 resultados para Bismuth
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Nanosized bismuth titanate was prepared via high-energy ball milling process through mechanically assisted synthesis directly from their oxide mixture of Bi2O3 and TiO2. Only Bi4Ti3O12 phase was formed after 3 h of milling time. The excess of 3 wt% Bi2O3 added in the initial mixture before milling does not improve significantly the formation of Bi4Ti3O12 phase comparing to stoichiometric mixture. The formed phase was amorphized independently of the milling time, The Rietveld analysis was adopted to determine the crystal structure symmetry, amount of amorphous phase, crystallite size and microstrains. With increasing the milling time from 3 to 12 h, the particle size of formed Bi4Ti3O12 did not reduced significantly. That was confirmed by SEM and TEM analysis. The particle size was less than 20 nm and show strong tendency to agglomeration. The electron diffraction pattern indicates that Bi4Ti3O12 crystalline powder is embedded in an amorphous phase of bismuth titanate. Phase composition and atom ratio in BIT ceramics were determined by X-ray diffraction and EDS analysis. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Multicolor and white light emissions have been achieved in Yb3+, Tm3+ and Ho3+ triply doped heavy metal oxide glasses upon laser excitation at 980 nm. The red (660 nm), green (547 nm) and blue (478 nm) up conversion emissions of the rare earth (RE) ions triply doped TeO2-GeO2-Bi2O3-K2O glass (TGBK) have been investigated as a function of the RE concentration and excitation power of the 980 nm laser diode. The most appropriate combination of RE in the TGBK glass host (1.6 wt% Yb2O3, 0.6 wt% Tm2O3 and 0.1 wt% Ho2O3) has been determined with the purpose to tune the primary colors (RGB) respective emissions and generate white light emission by varying the pump power. The involved infrared to visible up conversion mechanisms mainly consist in a three-photon blue up conversion of Tm3+ ions and a two-photon green and red up conversions of Ho3+ ions. The resulting multicolor emissions have been described according to the CIE-1931 standards. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Ferroelectric layefed-perovskite BaBi2Ta2O9 (BBT) has been prepared successfully by solid-state reaction. The influence of pressure and temperature/time annealing regime on the BBT phase formation was analyzed. The powders were characterized by thermal analysis and Xray diffraction and the sintered pellets by scanning electron microscopy. The crystalline BBT phase, free of secondary phases was obtained at 950 degreesC for 2 h. For an applied field strength of 380 kV/cm, a remnant polarization of 7.6 muC/cm(2) and an electric coercive field of 45.7 kV/cm were obtained. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Our efforts were directed to the preparation of bismuth titanate-Bi4Ti3O12 (BIT) by two procedures: mechanically assisted synthesis and polymeric precursor method to display a variety of their advantages. To follow the nucleation and phase formation of BIT, XRD and Rietveld refinement analysis were used and it was shown that Bi4Ti3O12 ceramic can been successfully prepared from nano-sized powders obtained by both methods. The ferroelectric properties were determined and the loops from BIT obtained by polymeric precursor method were not fully saturated with a remnant polarization of 20 mu C/cm(2) and coercitive field of 1500 kV/cm. BIT obtained from powders prepared by mechanically assisted synthesis shows a remnant polarization of 0.65 mu C/cm(2) and coercitive field of 1050 kV/cm. The grain morphology may be the factor causing the observed differences. (C) 2005 Published by Elsevier Ltd and Techna Group S.r.l.
Resumo:
Pure and niobium doped bismuth titanate ceramics (Bi4Ti3-xNbxO12 (BTN)), with x ranging from 0 to 0.4 were prepared by the polymeric precursor method. X-ray diffraction showed no secondary phases. Increasing niobium content leads to more resistive ceramics. The shape and size of the grains are strongly influenced by the niobiurn added to the system. The dielectric constant is not influenced by the niobium addition while hysteresis loops are significantly narrowed. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
Thin films of BaBi2Ta2O9 (BBT) composition were prepared through the metal organic decomposition method. The crystallinity, phase formation, crystallite size and morphology of the thin films were measured as a function of the type of substrate, stoichiometry of solution and process variables such as thickness and temperature. The thin films were investigated by grazing incidence X-ray diffractometry and atomic force microscopy (AFM) techniques. For the sample without excess of bismuth, diffraction peaks other than that of the BBT phase were observed. A well crystallized BBT single phase was observed for films prepared from a solution with 10% excess of bismuth, deposited on Si/Pt substrate, with a thickness up to 150 nm and sintered at temperatures of 700 degreesC. The thin BBT phase films heat-treated at 600 degreesC presented a diffraction pattern characteristic of samples with lower degree of crystallinity whereas for the thin films heat-treated at 800 degreesC, we observed the presence of other phases than the BBT. For the thin film deposited on the Sin+ substrate, we observe that the peaks corresponding to the BBT phase are broader than that observed on the samples deposited on the Pt and Si/Pt substrates. No variation of average crystallite size was observed as the excess of Bi increased from 10 to 20%. AFM images for the samples showed that the increasing the amount of bismuth promotes grain growth. The average surface roughness measured was in the range of 16-22 nm showing that the bismuth amount had no or little effect on the roughness of films. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
SrBi2Nb2O9 (SBN) thin films were prepared by the polymeric precursors method and deposited by dip coating onto Pt/Ti/SiO2/Si(100) substrates. The dip-coated films were specular and crack-free and crystallized during firing at 700 degrees C. Microstructure and morphological evaluation were followed by grazing incident X-ray diffraction (GIXRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The films exhibited somewhat porous grain structure with rounded grains of about 100 nm. For the electrical measurements, gold electrodes of 300 mu m in diameter were sputter deposited on the top surface, forming a metal-ferroelectric-metal (MFM) configuration. The remanent polarization (P-r) and coercive field (E-c) were 5.6 mu C/cm(2) and 100 kV/cm, respectively. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Bismuth was evaluated as an internal standard for the direct determination of Pb in vinegar by graphite furnace atomic absorption spectrometry using Ru as a permanent modifier with co-injection of Pd/Mg(NO3)(2). The correlation coefficient of the graph plotted from the non-nalized absorbance signals of Bi versus Pb was r=0.989. Matrix effects were evaluated by analyzing the slope ratios between the analytical curve, and analytical curves obtained from Pb additions in red and white wine vinegar obtained from reference solutions prepared in 0.2% (v/v) HNO3, samples. The calculated ratios were around 1.04 and 1.02 for analytical curves established applying an internal standard and 1.3 and 1.5 for analvtical curves without. Analytical curves in the 2.5-15 pg L-1 Pb concentration interval were established using the ratio Pb absorbance to Bi absorbance versus analvte concentration, and typical linear correlations of r=0.999 were obtained. The proposed method was applied for direct determination of Pb in 18 commercial vinegar samples and the Pb concentration varied from 2.6 to 31 pg L-1. Results were in agreement at a 95% confidence level (paired t-test) with those obtained for digested samples. Recoveries of Pb added to vinegars varied from 96 to 108% with and from 72 to 86% without an internal standard. Two water standard reference materials diluted in vinegar sample were also analyzed and results were in agreement with certified values at a 95% confidence level. The characteristic mass was 40 pg Pb and the useful lifetime of the tube was around 1600 firings. The limit of detection was 0.3 mu g L-1 and the relative standard deviation was <= 3.8% and <= 8.3% (n = 12) for a sample containing, 10 mu L-1 Pb with and without internal standard, respectively. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Bismuth titanate (Bi4Ti3O12-BIT) films were evaluated for use as lead-free piezoelectric thin-films in micro-electromechanical systems. The films were grown by the polymeric precursor method on Pt/Ti/SiO2/Si (1 0 0) (Pt) bottom electrodes at 700 degrees C for 2 h in static air and oxygen atmospheres. The domain structure was investigated by piezoresponse force microscopy (PFM). Annealing in static air leads to better ferroelectric properties, higher remanent polarization, lower drive voltages and higher piezoelectric coefficient. on the other hand, oxygen atmosphere favors the imprint phenomenon and reduces the piezoelectric coefficient dramatically. Impedance data, represented by means of Nyquist diagrams, show a dramatic increase in the resistivity for the films annealed in static air atmopshere. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The main purpose of this work is to evaluate the failure caused by electrical discharge on commercial ZnO varistor doped with oxide of Bi, Sb, Si, Cr, Co utilized in electric transmission systems. In order to observe the effect of electrical discharge over the microstructure and electrical properties of the varistors, two kinds of pulses were applied: long pulse (2000 ms) and short pulse (8/20 mu s). In both cases, a decrease in grain size and increase in micropores and leakage current were observed. The degraded samples present oxygen defficiency mainly in the grain boundary and phase tranformation from the bismuth oxide phase. (c) 2005 Springer Science+ Business Media, Inc.
Resumo:
This work presents the preparation of SrBi2Nb2O9 (SBN) directly by the combustion synthesis. Strontium nitrate, niobium ammonium oxalate (NH4H2[NbO-(C2O4)(3)].3H(2)O) and bismuth oxide were used as oxidant reactants and urea as fuel. The influence of the fuel was evaluated by the addition of different fuel amounts (50%, 100%, 200% and 300%), 100% being the stoichiometric proportion. The XRD patterns showed that the SBN perovskite crystallized as the majority phase. The as-synthesized stoichiometric powder presented a specific surface area of around 13 m(2)/g and a mean grain size of around 16 nm. Dilatometric measurements showed that the maximum sintering rate occurs at 1275degreesC. The determination of the ferroparaelectric transition showed a Curie temperature (T-c) of 429degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Strontium bismuth tantalate thin films were prepared on several substrates (platinized silicon (PvTi/SiO2/Si), n-type (100)-oriented and p-type (111)-oriented silicon wafers, and fused silica) by the solution deposition method. The resin was obtained by the polymeric precursor method, based on the Pechini process, using strontium carbonate, bismuth oxide, and tantalum ethoxide as starting reagents. Characterizations by XRD and SEM were performed for structural and microstructural evaluations. The electrical measurements, carried on the MFM configuration, showed P-r values of 6.24 muC/cm(2) and 31.5 kV/cm for the film annealed at 800 degreesC. The film deposited onto fused silica and treated at 700 degreesC presented around 80 % of transmittance.