124 resultados para citrate potassium
Resumo:
The effect of uroguanylin (UGN) oil K(+) and H(+) secretion in the renal tubules of the rat kidney was studied using in vivo stationary microperfusion. For the study of K(+) secretion, a tubule was Punctured to inject a column of FDC-green-colored Ringer's solution with 0.5 mmol KCI/L 10(-6)(mol UGN/L, and oil was Used to block fluid flow. K(+) activity and transepithelial potential differences (PD) were measured with double microelectrodes (K(+) ion-selective resin vs. reference) in the distal tubules of the same nephron. During perfusion, K(+) activity rose exponentially, from 0.5 mmol/L to stationary concentration, allowing for the calculation of K(+) secretion J(K)). JK increased from 0.63 +/- 0.06 nmol.cm(-2).s(-1) in the control croup to 0.85 +/- 0.06 in the UGN group (p < 0.01). PD was -51.0 +/- 5.3 mV in the control group and -50.3 +/- 4.98 mV in the UGN group. In the presence of 10(-7) mol iberiotoxin/L, the UGN effect was abolished: JK was 0.37 +/- 0.038 nmol-cm(-2).s(-1) in the absence of, and 0.38 +/- 0.025 in the presence of, UGN. indicating its action oil rnaxi-K channels. In another series of experiments, renal tubule acidification was studied, using similar method: proximal and distal tubules were perfused with solutions containing 25 mmol NaHCO(3)/L. Acidification half-time was increased both in proximal and distal segments and, as a consequence, bicarbonate reabsorption decreased in the presence of UGN (in proximal tubules, from 2.40 +/- 0.26 to 1.56 +/- 0.21 nmol-cm(-2).s(-1)). When the Na(+)/H(+) exchanger was inhibited by 10(-4) mol hexamethylene amiloride (HMA)/L, the control and UGN groups were not significantly different. In the late distal tubule, after HMA, UGN significantly reduced J(HCO3)(-). indicating all effect of UGN oil H(+)-ATPase. These data show that UGN stimulated J(K)(+) by actin, oil maxi-K channels. and decreased J(HCO3)(-) by acting on NHE3 in proximal and H(+)-ATPase in distal tubules.
Resumo:
Dynamic viscosity of binary mixtures of poly(ethylene glycol) molar mass 1500 da + water, potassium phosphate + water, and ternary mixtures of poly(ethylene glycol) molar mass 1500 da + potassium phosphate + water were determined at 303.15 K Binary and ternary mixture viscosities showed a direct logarithm-type relation with the increase of poly(ethylene glycol) and potassium phosphate contents. The models used for viscosity correlation gave a good fit to the experimental data.
Resumo:
A recent and innovative method to include Ti into the columbite precursor has permitted to synthesize 0.9PMN-0.1PT powders with high homogeneity. The present work describes this methodology, named modified columbite method, showing that the reaction between MN(T)and PbO at 800 degrees C for 2 h results in perovskite single-phase. The crystal structure alterations in the columbite and perovskite phases obtained by this methodology and the effects of potassium doping were investigated by the Rietveld method. Changes in the powder morphology, density and weight loss during the sintering process were also studied. Conclusively, potassium does not affect significantly the perovskite amount, but reduces the particle and grain sizes. This dopant also changes the relaxor behavior of 0.9PMN-0.1 PT ceramic, reducing the dielectric loss and enhancing the diffuseness of the phase transition. (C) 2005 Published by Elsevier Ltd and Techna Gronp S.r.l.
Resumo:
Sildenafil citrate (Viagra) [I] and sildenafil base [II] are easily and unequivocally characterized by a set of physicochemical methods that include X-ray diffractometry, infrared spectroscopy, and thermal analysis. Monoclinic lattice constants: [I]: a = 26.98 Angstrom; b = 11.95 Angstrom; c = 16.68 Angstrom; beta = 106.97degrees. [II]: a = 8.66 Angstrom; b = 34.27 Angstrom; c = 8.93 Angstrom; beta = 96.63'. Both compounds decompose at 189.4degreesC [I] and 251.9degreesC [II]. Densities and refractive indices are given. (C) 2003 Wiley-Liss, Inc.
Resumo:
A trial was conducted during 1994-95 to study the effect of potassium fertilization on a guava (Psidium guajava L.) culture for 3 years. The control plots (without K) showed fruit production and potassium exportation that did not agree with the levels obtained by chemical analysis of the soil. Physical, chemical, mineralogic and morphologic analyses were performed on the red yellow latosol to identify minerals able to supply potassium, with emphasis on the fact that guava trees have a considerably widespread root system. The results obtained confirmed the presence of minerals in this soil that can supply potassium to the trees through weathering. Feldspars were identified in the silt fraction and micas in the clay fraction by X-ray diffractometry. The determination of total potassium revealed that the silt fraction of the soil had the largest absolute amounts of potassium, followed by clay. However, in view of its greater content, clay was the fraction that contributed most to the total amounts of potassium detected.
Resumo:
Cotton (Gossypium hirsutum var. Latifolium) was grown in nutrient media, at two K levels: 58.5 mg/K and 11.7 mg/K. Potassium deficiency (11.7 mg K/g of K) was imposed upon cotton plants at different stages of plant development. A sequence of increasing sensitivity to K deficiency among cotton plant parts was observed: leaves < bolls < roots < stems. When K deficiency symptoms are clearly visible in the leaves, all the other plant parts are already affected. Bolls are a very important component in K partitioning within the cotton plant, but K is required most by the bur itself and is not translocated to seeds or fibers. Cotton could overcome a 30 day deficiency late in the season without significant losses in lint and seed cotton yields.
Resumo:
The dielectric permittivity of Na0.80K0.20NbO3 ceramic was investigated by impedance spectroscopy. The dielectric characterization was performed from room temperature to 800 degreesC, in the frequency range 5 Hz-13 MHz. The bulk permittivity was derived by the variation of the imaginary part of the impedance as a function of reciprocal angular frequency. The permittivity values as a function of temperature showed two maxima. The first maximum is very similar at 200degreesC and the second one positioned at around 400degreesC, which was associated to Curie's temperature. The evolution of the complex permittivity as a function of frequency and temperature was investigated. At low frequency dispersion was investigated in terms of dielectric loss. The Na0.80K0.20NbO3 showed a dissipation factor between 5 and 40 over a frequency range from 1 to 10(2) kHz. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Thin films of potassium niobate were deposited on MgO (100) substrates by the polymeric precursor method and annealing in static air at 600 degreesC for 20 h. The obtained films were characterized by X-ray diffraction, atomic force microscopy (AFM) and the prism coupling method. The phi-scan diffraction evidenced the growth of the films with fourfold symmetry. AFM study shows that the films are homogeneous, dense and present a smooth surface. The refractive index and optical losses were strongly influenced by the degree of crystallinity. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The influence of pH on the degradation of the herbicide tebuthiuron (TBH) was investigated using in situ generated Fe(III)-citrate complexes (Fe:cit) submitted to the photo-Fenton process under solar irradiation. Using Fe:cit in a wide pH range (2.5-7.5), 100-78% TBH oxidation was achieved respectively from a UV dose of 2.0 J cm(-2) (15 min). Moreover, the oxidation of TBH obtained in the presence of Fe:cit at pH 6.0 was higher than that obtained using Fe(NO3)3 at pH 2.5. A similar behavior is observed for the removal of total organic carbon (TOC) in TBH solutions. In the presence of Fe:cit, 20% and 85% of TOC was removed at pH 7.5 and 2.5, respectively, after 7.5 J cm-2 irradiation, while no mineralization was observed employing Fe(NO3)(3) for the same UV dose. Using Fe(NO3)(3), mineralization was observed only after 11 J cm-2 (8%). A higher mineralization rate was obtained with Fe(NO3)(3) only when a concentration three times higher was employed at pH 2.5. Besides the high efficiency of TBH degradation observed using the ferric citrate complex in the solar photo-Fenton process, it also offers the advantage of application at a pH of up to 7.5. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
C5H9BF3KS2, triclinic, P (1) over bar (no. 2), a = 11.9238(5) angstrom, b = 13.6060(5) angstrom, c = 14.0280(3) angstrom, alpha = 114.995(2)degrees, beta = 92.035(2)degrees, gamma = 92.390(2)degrees, V = 2057.4 angstrom(3), Z = 8, R-gt(F) = 0.049, wR(ref)(F-2) = 0.117, T = 296 K.
Resumo:
Background and Objectives. A combination of epidural and general anesthesia has been widely used to attenuate the surgical stress response and to provide postoperative analgesia. This case report illustrates the use of this anesthetic technique. Analgesia was induced with local anesthetic in the immediate postoperative period using unintentional 19.1% potassium chloride (KCI) as diluent. Methods. An ASA I male patient was scheduled for surgical correction of idiopathic megaesophagus under continuous epidural anesthesia combined with general anesthesia. In the postoperative period, while preparing 10 mt 0.125% bupivacaine to be administered through the epidural catheter for pain control, 5 mt 19.1% KCI was unintentionally used as diluent, resulting in a 9.55% potassium solution concentration. Results. The patient developed warmness of the lower limbs, tachycardia, hypertension, intense pruritus on the chest, agitation, exacerbation of sensory and motor blocks, and respiratory failure secondary to pulmonary edema, requiring ventilatory support. Total recovery was observed after 24 hours. Conclusions. Epidurally injected potassium leads to severe clinical manifestations caused by autonomic dysfunction, spinal cord irritation, and possible release of histamine. Despite continuous recommendations, ampule misidentification still happens in hospitals, frequently leading to serious accidents.
Resumo:
The structure and the ionic conduction properties of siloxane-poly(oxypropylene) (PPO) hybrids doped with different potassium salts (KCF3SO3, KI, KClO4 and KNO2) are reported for two polymer molecular weights (300 and 4000 g/mol), labelled PPO300 and PPO4000, respectively. The doping concentration, related to the concentration of the ether type oxygen of the PPO chain, is the same whatever the salt and verifies [O]/[K] = 20. Ionic room temperature conductivity shows the highest value for the KCF3SO3 doped PPO4000 hybrid (4 x 10(-7)Omega(-1).cm(-1)). The structure of these hybrids was investigated by X-ray powder diffraction (XRPD) and X-ray absorption spectroscopy (EXAFS and XANES) at the potassium K-edge (3607 eV). XRPD results show that the hybrid matrix is always amorphous and the formation of secondary potassium phases is observed for all the samples, except for the KCF3SO3 doped PPO4000 hybrid. EXAFS results evidence a good correlation between the ionic conductivity and the presence of oxygen atoms as first neighbours around potassium.
Resumo:
A greenhouse experiment studied the effect of potassium fertilization on soybean (Glycine max L. Merrill) root morphology and on K absorption by six soybean cultivars of different maturation groups and growth habits. The Plants were grown up to 70 days after plant emergence, in pots containing 6.0 kg of soil. In the absence of K, no significant difference in K absorption was observed among the cultivars or in root length and surface, but root mean radius was correlated to K absorption. Differences in K absorption were not associated with root characteristics in the presence of K fertilization. Physiological adjustments in K uptake, as well as K availability in the soil, were more important in soybean nutrition than were morphological adjustments in the root system. The results were not associated with plant growth habit or with maturation group.