11 resultados para citrate potassium

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Potassium bis-(tricyanovinyl) amine, K+N[C(CN)=C(CN)2]2-, crystallizes in the monoclinic system with the space group Cc and lattice constants, a = 13.346 ± 0.003 Å, c = 8.992 ± 0.003 Å, B = 114.42 ± 0.02°, and Z = 4. Three dimensional intensity data were collected by layers perpendicular to b* and c* axes. The crystal structure was refined by the least squares method with anisotropic temperature factor to an R value of 0.064.

The average carbon-carbon and carbon-nitrogen bond distances in –C-CΞN are 1.441 ± 0.016 Å and 1.146 ± 0.014 Å respectively. The bis-(tricyanovinyl) amine anion is approximately planar. The coordination number of the potassium ion is eight with bond distances from 2.890 Å to 3.408 Å. The bond angle C-N-C of the amine nitrogen is 132.4 ± 1.9°. Among six cyano groups in the molecule, two of them are bent by what appear to be significant amounts (5.0° and 7.2°). The remaining four are linear within the experimental error. The bending can probably be explained by molecular packing forces in the crystals.

Part II

The nuclear magnetic resonance of 81Br and 127I in aqueous solutions were studied. The cation-halide ion interactions were studied by studying the effect of the Li+, Na+, K+, Mg++, Cs+ upon the line width of the halide ions. The solvent-halide ion interactions were studied by studying the effects of methanol, acetonitrile, and acetone upon the line width of 81Br and 127I in the aqueous solutions. It was found that the viscosity plays a very important role upon the halide ions line width. There is no specific cation-halide ion interaction for those ions such as Mg++, Di+, Na+, and K+, whereas the Cs+ - halide ion interaction is strong. The effect of organic solvents upon the halide ion line width in aqueous solutions is in the order acetone ˃ acetonitrile ˃ methanol. It is suggested that halide ions do form some stable complex with the solvent molecules and the reason Cs+ can replace one of the ligands in the solvent-halide ion complex.

Part III

An unusually large isotope effect on the bridge hydrogen chemical shift of the enol form of pentanedione-2, 4(acetylacetone) and 3-methylpentanedione-2, 4 has been observed. An attempt has been made to interpret this effect. It is suggested from the deuterium isotope effect studies, temperature dependence of the bridge hydrogen chemical shift studies, IR studies in the OH, OD, and C=O stretch regions, and the HMO calculations, that there may probably be two structures for the enol form of acetylacetone. The difference between these two structures arises mainly from the electronic structure of the π-system. The relative population of these two structures at various temperatures for normal acetylacetone and at room temperature for the deuterated acetylacetone were calculated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measuring electrical activity in large numbers of cells with high spatial and temporal resolution is a fundamental problem for the study of neural development and information processing. To address this problem, we have constructed FlaSh: a novel, genetically-encoded probe that can be used to measure trans-membrane voltage in single cells. We fused a modified green fluorescent protein (GFP) into a voltage-sensitive potassium channel so that voltage dependent rearrangements in the potassium channel induce changes in the fluorescence of GFP. A voltage sensor encoded into DNA has the advantage that it may be introduced into an organism non-invasively and targeted to specific developmental stages, brain regions, cell types, and sub-cellular compartments.

We also describe modifications to FlaSh that shift its color, kinetics, and dynamic range. We used multiple green fluorescent proteins to produce variants of the FlaSh sensor that generate ratiometric signal output via fluorescence resonance energy transfer (FRET). Finally, we describe initial work toward FlaSh variants that are sensitive to G-protein coupled receptor (GPCR) activation. These sensors can be used to design functional assays for receptor activation in living cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of the pH and temperature dependence of the redox potentials of azurins from five species of bacteria has been performed. The variations in the potentials with pH have been interpreted in terms of electrostatic interactions between the copper site and titrating histidine residues, including the effects of substitutions in the amino acid sequences of the proteins on the electrostatic interactions. A comparison of the observed pH dependences with predictions based on histidine pK_a values known for Pseudomonas aeruginosa (Pae), Alcaligenes denitrificans (Ade), and Alcaligenes faecalis (Afa) azurins indicates that the Pae and Ade redox potentials exhibit pH dependences in line with electrostatic arguments, while Afa azurin exhibits more complex behavior. Redox enthalpies and entropies for four of the azurins at low and high pH values have also been obtained. Based on these results in conjuction with the variable pH experiments, it appears that Bordetella bronchiseptica azurin may undergo a more substantial conformational change with pH than has been observed for other species of azurin.

The temperature dependence of the redox potential of bovine erythrocyte superoxide dismutase (SOD) has been determined at pH 7.0, with potassium ferricyanide as the mediator. The following thermodynamic parameters have been obtained (T = 25°C): E°' = 403±5 mV vs. NHE, ΔG°' = -9.31 kcal/mol, ΔH°' = -21.4 kcal/mol, ΔS°' = -40.7 eu, ΔS°'_(rc) = -25.1 eu. It is apparent from these results that ΔH°', rather than ΔS°', is the dominant factor in establishing the high redox potential of SOD. The large negative enthalpy of reduction may also reflect the factors which give SOD its high specificity toward reduction and oxidation by superoxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adsorption of aqueous Pb(II) and Cu(II) on α-quartz was studied as a function of time, system surface area, and chemical speciation. Experimental systems contained sodium as a major cation, hydroxide, carbonate, and chloride as major anions, and covered the pH range 4 to 8. In some cases citrate and EDTA were added as representative organic complexing agents. The adsorption equilibria were reached quickly, regardless of the system surface area. The positions of the adsorption equilibria were found to be strongly dependent on pH, ionic strength and concentration of citrate and EDTA. The addition of these non-adsorbing ligands resulted in a competition between chelation and adsorption. The experimental work also included the examination of the adsorption behavior of the doubly charged major cations Ca(II) and Mg(II) as a function of pH.

The theoretical description of the experimental systems was obtained by means of chemical equilibrium-plus-adsorption computations using two adsorption models: one mainly electrostatic (the James-Healy Model), and the other mainly chemical (the Ion Exchange-Surface Complex Formation Model). Comparisons were made between these two models.

The main difficulty in the theoretical predictions of the adsorption behavior of Cu(II) was the lack of the reliable data for the second hydrolysis constant(*β_2) The choice of the constant was made on the basis of potentiometric titratlons of Cu^(2+)

The experimental data obtained and the resulting theoretical observations were applied in models of the chemical behavior of trace metals in fresh oxic waters, with emphasis on Pb(II) and Cu(II).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several different methods have been employed in the study of voltage-gated ion channels. Electrophysiological studies on excitable cells in vertebrates and molluscs have shown that many different voltage-gated potassium (K+) channels and sodium channels may coexist in the same organism. Parallel genetic studies in Drosophila have identified mutations in several genes that alter the properties of specific subsets of physiologically identified ion channels. Chapter 2 describes molecular studies that identify two Drosophila homologs of vertebrate sodium-channel genes. Mutations in one of these Drosophila sodium-channel genes are shown to be responsible for the temperature-dependent paralysis of a behavioural mutant parats. Evolutionary arguments, based on the partial sequences of the two Drosophila genes, suggest that subfamilies of voltage-gated sodium channels in vertebrates remain to be identified.

In Drosophila, diverse voltage-gated K+ channels arise from alternatively spliced mRNAs generated at the Shaker locus. Chapter 3 and the Appendices describe the isolation and characterization of several human K+-channel genes, similar in sequence to Shaker. Each of these human genes has a highly conserved homolog in rodents; thus, this K+-channel gene family probably diversified prior to the mammalian radiation. Functional K+ channels encoded by these genes have been expressed in Xenopus oocytes and their properties have been analyzed by electrophysiological methods. These studies demonstrate that both transient and noninactivating voltage-gated K+ channels may be encoded by mammalian genes closely related to Shaker. In addition, results presented in Appendix 3 clearly demonstrate that independent gene products from two K+-channel genes may efficiently co-assemble into heterooligomeric K+ channels with properties distinct from either homomultimeric channel. This finding suggests yet another molecular mechanism for the generation of K+-channel diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I. Trimethylsilylpotassium reacts with epoxides to give olefins with inversion of stereochemistry. The reaction appears to proceed via the potassium β-silyl alkoxide (2) formed from the S_N2 attack of the silyl anion on the epoxide. Subsequent stereospecific synelimination of 2 affords the olefin of inverted stereo-chemistry. The reaction is convenient and preparatively useful.

The byproduct of the reaction, potassium trimethylsilanolate (17), effectively cleaves hexamethyldisilane to yield trimethylsilylpotassium. Since the latter reagent is generated and reacted in situ with epoxides, the overall reaction can be carried out with less than one equivalent of potassium methoxide.

II. The reaction of aryl halides with trimethylsilyl anions in HMPT provides good yields of aryltrimethylsilanes, useful synthetic intermediates. The choice of metal cation is unimportant. Chlorides and bromides give high yields of silylated products, while iodides give lower yields, with correspondingly increased amounts of reduced products. Arylammonium and arylphosphonium salts also undergo the reaction.

We have permissive evidence for the reaction proceeding via both aryl radical and aryl anion intermediates.

III. Trimethylsilyl and trimethylstannyl methoxycarbene complexes of chromium and tungsten have been prepared. One of these, (CO)_5WC(OMe)SnMe_3, reacts with norbornene at 80° to afford a new olefin polymer. Efforts to effect the alpha-elimination of the nonmetallic carbene ligands have not yet been successful. Reactions of these carbene complexes with acetone have been investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alkali metal salts of 1,5-hexadien-3-ols undergo accelerated Cope rearrangements to the enolates of δ, ε-unsaturated carbonyl compounds. The generality of the rearrangement was investigated in numerous systems, particularly acyclic cases, and the effect of changes in substituents, counterions, solvents, and geometrical structures were noted and discussed. Applications of this methodology in synthesis included the synthesis of the insect pheromone frontalin, the preparation of selectively monoprotected 1,6-dicarbonyl compounds from 4-methoxy- and 4-phenylthio-1,5-hexadien-3-ols, and the construction of complex ring structures such as a D-homo-estratetraenone derivative.

Thermochemical estimates of the energetics of anionpromoted alkoxide fragmentations were made, and in all cases heterolytic cleavage was favored over hemolytic cleavage by 8.5-53 kcal/mol. The implication of these and other thermochemical estimates is that the anionic oxy-Cope rearrangement occurs via a concerted mechanism rather than a dissociation-recombination process. The concepts of anion-induced bond weakening were successfully applied to an accelerated [1,3]-shift of a dithiane fragment in a cyclohexenyl system. Trapping experiments demonstrated that > 85% of the [1,3]-shift occurred within a solvent cage. Attempts at promoting an intramolecular ene reaction using the potassium salts of 2,7-octadien-1-o1 and 2,8-nonadien-1-o1 were unsuccessful. A general review of anion-promoted bond reorganizations and anion substituent effects is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I. Alkaline phosphatase activity in the developing sea urchin Lytechinus pictus has been investigated with respect to intensity at various stages, ionic requirements and intracellular localization. The activity per embryo remains the same in the unfertilized egg, fertilized egg and cleavage stages. At a time just prior to gastrulation (about 10 hours after fertilization) the activity per embryo begins to rise and increases after 300 times over the activity in the cleavage stages during the next 60 hours.

The optimum ionic strength for enzymatic activity shows a wide peak at 0.6 to 1.0. Calcium and magnesium show an additional optimum at a concentration in the range of 0.02 to 0.07 molar. EDTA at concentrations of 0.0001 molar and higher shows a definite inhibition of activity.

The intracellular localization of alkaline phosphatase in homogenates of 72-hour embryos has been studied employing the differential centrifugation method. The major portion of the total activity in these homogenates was found in mitochondrial and microsomal fractions with less than 5% in the nuclear fraction and less than 2% in the final supernatant. The activity could be released from all fractions by treatment with sodium deoxycholate.

II. The activation of protein biosynthesis at fertilization in eggs of the sea urchins Lytechinus pictus and Strongylocentrotus purpuratus has been studied in both intact eggs and cell-free homogenates. It is shown that homogenates from both unfertilized and fertilized eggs are dependent on potassium and magnesium ions for optimum amino acid incorporation activity and in the case of the latter the concentration range is quite narrow. Though the optimum magnesium concentrations appear to differ slightly in homogenates of unfertilized and fertilized eggs, in no case was it observed that unfertilized egg homogenates were stimulated to incorporate at a level comparable to that of the fertilized eggs.

An activation of amino acid incorporation into protein has also been shown to occur in parthenogenetically activated non-nucleate sea urchin egg fragments or homogenates thereof. This activation resembles that in the fertilized whole egg or fragment both in amount and pattern of activation. Furthermore, it is shown that polyribosomes form in these non-nucleate fragments upon artificial activation. These findings are discussed along with possible mechanisms for activation of the system at fertilization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental and theoretical studies have been made of the electrothermal waves occurring in a nonequilibrium MHD plasma. These waves are caused by an instability that occurs when a plasma having a dependence of conductivity on current density is subjected to crossed electric and magnetic fields. Theoretically, these waves were studied by developing and solving the equations of a steady, one-dimensional nonuniformity in electron density. From these nonlinear equations, predictions of the maximum amplitude and of the half width of steady waves could be obtained. Experimentally, the waves were studied in a nonequilibrium discharge produced in a potassium-seeded argon plasma at 2000°K and 1 atm. pressure. The behavior of such a discharge with four different configurations of electrodes was determined from photographs, photomultiplier measurements, and voltage probes. These four configurations were chosen to produce steady waves, to check the stability of steady waves, and to observe the manifestation of the waves in a MHD generator or accelerator configuration.

Steady, one-dimensional waves were found to exist in a number of situations, and where they existed, their characteristics agreed with the predictions of the steady theory. Some extensions of this theory were necessary, however, to describe the transient phenomena occurring in the inlet region of a discharge transverse to the gas flow. It was also found that in a discharge away from the stabilizing effect of the electrodes, steady waves became unstable for large Hall parameters. Methods of prediction of the effective electrical conductivity and Hall parameter of a plasma with nonuniformities caused by the electrothermal waves were also studied. Using these methods and the values of amplitude predicted by the steady theory, it was found that the measured decrease in transverse conductivity of a MHD device, 50 per cent at a Hall parameter of 5, could be accounted for in terms of the electrothermal instability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hydroxyketone C-3, an intermediate in the stereo-selective total synthesis of dl-Desoxypodocarpic acid (ii), has been shown by both degradative and synthetic pathways to rearrange in the presence of base to diosphenol E-1 (5-isoabietic acid series). The exact spatial arrangements of the systems represented by formulas C-3 and E-1 have been investigated (as the p-bromobenzoates) by single-crystal X-ray diffraction analyses. The hydroxyketone F-1, the proposed intermediate in the rearrangement, has been synthesized. Its conversion to diosphenol E-1 has been studied, and a single-crystal analysis of the p-bromobenzoate derivative has been performed. The initially desired diosphenol C-6 has been prepared, and has been shown to be stable to the potassium t-butoxide rearrangement conditions. Oxidative cleavage of diosphenol E-1 and subsequent cyclization with the aid of polyphosphoric acid has been shown to lead to keto acid I-2 (benzobicyclo [3.3.1] nonane series) rather than keto acid H-2 (5-isoabietic acid series).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to determine the properties of the bicycloheptatrienyl anion (Ia) (predicted to be conjugatively stabilized by Hückel Molecular Orbital Theory) the neutral precursor, bicyclo[3. 2. 0] hepta-1, 4, 6-triene (I) was prepared by the following route.

Reaction of I with potassium-t-butoxide, potassium, or lithium dicyclohexylamide gave anion Ia in very low yield. Reprotonation of I was found to occur solely at the 1 or 5 position to give triene II, isolated as to its dimers.

A study of the acidity of I and of other conjugated hydrocarbons by means of ion cyclotron resonance spectroscopy resulted in determination of the following order of relative acidities:

H2S ˃ C5H6 ˃ CH3NO2 ˃ 1, 4- C5H8 ˃ I ˃ C2H5OH ˃ H2O; cyclo-C7H8 ˃ C2 H5OH; фCH3 ˃ CH3OH

In addition, limits for the proton affinities of the conjugate bases were determined:

350 kcal/mole ˂ PA(C5 H5-) ˂ 360 kcal/mole

362 kcal/mole ˂ PA(C5H7-, Ia, cyclo-C7H7-) ˂ 377 kcal/mole PA(фCH2-) ˂ 385 kcal/mole

Gas phase kinetics of the trans-XVIII to I transformation gave the following activation parameters: Ea = 43.0 kcal/mole, log A = 15.53 and ∆Sǂ (220°) = 9.6 cu. The results were interpreted as indicating initial 1,2 bond cleavage to give the 1,3-diradical which closed to I. Similar studies on cis-XVIII gave results consistent with a surface component to the reaction (Ea = 22.7 kcal/mole; log A = 9.23, ∆Sǂ (119°) = -18.9 eu).

The low pressure (0.01 to 1 torr) pyrolysis of trans-XVIII gave in addition to I, fulvenallene (LV), ethynylcyclopentadiene (LVI) and heptafulvalene (LVII). The relative ratios of the C7H6 isomers were found to be dependent upon temperature and pressure, higher relative pressure and lower temperatures favoring formation of I. The results were found to be consistent with the intermediacy of vibrationally excited I and subsequent reaction to give LV and LVI.