114 resultados para Temperature dependent viscosity


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The luminescence properties of solid hydrated lanthanide squarates (Ln2(C4O4)3(H2O) x; x = 8 or 13;Ln3+ = Gd, La, Eu, Tb, Pr) are reported for temperatures down to 4.2K. The luminescence of the squarate group is observed for the Gd3+ and La3+ compounds at low temperatures (below 150K). The Pr3+ compound does not show any emission at all, not even at 4.2K. This is ascribed to the quenching of the Pr3+ emission by multiphonon relaxation and/or concentration quenching. The quantum efficiencies of the 5D0 emission of Eu3+ and of the 5D4 emission of Tb3+ in these squarate complexes are strikingly different. Whereas the Tb3+ emission shows a temperature independent quantum efficiency of 50% upon ligand excitation, the Eu3+ emission is strongly quenched, showing a temperature dependent quantum efficiency of 0.8% at 4.2K upon ligand excitation. This quenching is ascribed to the low energy position of the charge-transfer state of Eu3+ in these compounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transient process of solidification of laminar liquid flow (water) submitted to super-cooling was investigated both theoretically and experimentally. In this study an alternative analytical formulation and numerical approach were adopted resulting in the unsteady model with temperature dependent thermophysical properties in the solid region. The proposed model is based upon the fundamental equations of energy balance in the solid and liquid regions as well as across the solidification front. The basic equations and the associated boundary and initial conditions were made dimensionless by using the Landau transformation to immobilize the moving front and render the problem to a fixed plane type problem. A laminar velocity profile is admitted in the liquid domain and the resulting equations were discretized using the finite difference approach. The numerical predictions obtained were compared with the available results based on other models and concepts such as Neumann analytical model, the apparent thermal capacity model due to Bonacina and the conventional fixed grid energy model due to Goodrich. To obtain further comparisons and more validation of the model and the numerical solution, an experimental rig was constructed and instrumented permitting very well controlled experimental measurements. The numerical predictions were compared with the experimental results and the agreement was found satisfactory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The exact solution for the full electronic Hamiltonian for a two-level dimer is obtained. The parameter constellation (roughly 20) is reparametrized via orthogonal Gaussian atomic orbitals, yielding a five-parameter model. With the dimer embedded in a thermal bath, the specific heat and several temperature-dependent dynamical susceptibilities are computed. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optical excitation of Ce3+-doped SnO2 thin films, obtained by the sol-gel-dip-coating technique, is carried out and the effects on electrical transport are evaluated. Samples are doped with O. lat% of Ce, just above the saturation limit. The excitation is done with an intensity-controlled halogen-tungsten lamp through an interference filter, yielding an excitation wavelength of 513nm, 9 nm wide (width at half intensity peak). Irradiation at low temperature (25K) yields a conductivity increase much lower than above bandgap light. Such a behavior assures the ionization of intra-bandgap defect levels, since the filter does not allow excitation of electron-hole pairs, what would happen only in the UV range (below about 350nm). The decay of intra-bandgap excited levels in the range 250-320 K is recorded, leading to a temperature dependent behavior related to a thermally excited capture cross section for the dominating defect level. © 2008 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss the thermal dependence of the zero-bias electrical conductance for a quantum dot embedded in a quantum wire, or side-coupled to it. In the Kondo regime, the temperature-dependent conductances map linearly onto the conductance for the symmetric Anderson Hamiltonian. The mapping fits accurately numerical renormalization-group results for the conductance in each geometry. In the side-coupled geometry, the conductance is markedly affected by a gate potential applied to the wire; in the embedded geometry, it is not. © 2010 IOP Publishing Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sugarcane juice is a relatively low-cost agricultural resource, abundant in South Asia, Central America and Brazil, with vast applications in producing ethanol biofuel. In that way, a good knowledge of the rheological properties of this raw material is of crucial importance when designing and optimizing unit operations involved in its processing. In this work, the rheological behavior of untreated (USCJ, 17.9 °Brix), clarified (CSCJ, 18.2 °Brix) and mixed (MSCJ, 18.0 °Brix) sugarcane juices was studied at the temperature range from 277K to 373K, using a cone-and-plate viscometer. These fluids were found to present a Newtonian behavior and their flow curves were well-fitted by the viscosity Newtonian model. Viscosity values lied within the range 5.0×10 -3Pas to 0.04×10 -3Pas in the considered temperature interval. The dependence of the viscosity on the temperature was also successfully modeled through an Arrhenius-type equation. In addition to the dynamic viscosity, experimental values of pressure loss in tube flow were used to calculate friction factors. The good agreement between predicted and measured values confirmed the reliability of the proposed equations for describing the flow behavior of the clarified and untreated sugarcane juices. © 2010 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The magnetic characteristics of Ga1-xMnxN nanocrystalline films (x = 0.08 and x = 0.18), grown by reactive sputtering onto amorphous silica substrates (a-SiO2), are shown. Further than the dominant paramagnetic-like behaviour, both field- and temperature-dependent magnetization curves presented some particular features indicating the presence of secondary magnetic phases. A simple and qualitative analysis based on the Brillouin function assisted the interpretation of these secondary magnetic contributions, which were tentatively attributed to antiferromagnetic and ferromagnetic phases. © 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Changing the sample's temperature from 200 K to 535 K, we observed 670-fold enhancement of a phonon-assisted upconversion emission at ≈754 nm obtained from a Nd3+-doped tellurite glass excited by 5 ns laser pulses at 805 nm. A rate-equation model, including the relevant energy levels and temperature dependent transition rates, is proposed to describe the process. The results fit well with the data when one considers the nonradiative transitions contributing for the 754 nm luminescence are promoted by an effective phonon mode with energy of 700 cm-1. © 2013 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Doping tin dioxide (SnO2) with pentavalent Sb5+ ions leads to an enhancement in the electrical conductivity of this material, because Sb5+ substitutes Sn4+ in the matrix, promoting an electronic density increase in the conduction band, due to the donor-like nature of the doping atom. Results of computational simulation, based on the Density Functional Theory (DFT), of SnO2:4%Sb and SnO2:8%Sb show that the bandgap magnitude is strongly affected by the doping concentration, because the energy value found for 4 at%Sb and 8 at%Sb was 3.27 eV and 3.13 eV, respectively, whereas the well known value for undoped SnO2 is about 3.6 eV. Sb-doped SnO2 thin films were obtained by the sol-gel-dip-coating technique. The samples were submitted to excitation with below theoretical bandgap light (450 nm), as well as above bandgap light (266 nm) at low temperature, and a temperature-dependent increase in the conductivity is observed. Besides, an unusual temperature and time dependent decay when the illumination is removed is also observed, where the decay time is slower for higher temperatures. This decay is modeled by considering thermally activated cross section of trapping centers, and the hypothesis of grain boundary scattering as the dominant mechanism for electronic mobility. © 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of chemically modified starches is widely accepted in various industries, with several applications. In this research, natural cassava starch granules were treated with standard sodium hypochlorite solution at 0.8, 2.0, and 5.0 g Cl/100 g starch. The native and modified starch samples were investigated by means of the following techniques: simultaneous thermogravimetry-differential thermal analysis, which allowed us to verify the thermal decomposition associated with endothermic or exothermic phenomena; and differential scanning calorimetry that was used to determine gelatinization enthalpy as well as the rapid viscoamylographic analysis that provided the pasting temperature and viscosity. By means of non-contact-atomic force microscopy method and X-ray powder patterns diffractometry, it was possible to observe the surface morphology, topography of starch granules, and alterations in the granules' crystallinity. © 2012 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thin films of the semiconductor NiO are deposited using a straightforward combination of simple and versatile techniques: the co-precipitation in aqueous media along with the dip- coating process. The obtained material is characterized by gravimetric/differential thermal analysis (TG-DTA) and X-ray diffraction technique. TG curve shows 30 % of total mass loss, whereas DTA indicates the formation of the NiO phase about 578 K (305 C). X-ray diffraction (XRD) data confirms the FCC crystalline phase of NiO, whose crystallinity increases with thermal annealing temperature. UV-Vis optical absorption measurements are carried out for films deposited on quartz substrate in order to avoid the masking of bandgap evaluation by substrate spectra overlapping. The evaluated bandgap is about 3.0 eV. Current-voltage (I-V) curves measured for different temperatures as well as the temperature-dependent resistivity data show typical semiconductor behavior with the resistivity increasing with the decreasing of temperature. The Arrhenius plot reveals a level 233 meV above the conduction band top, which was attributed to Ni2+ vacancy level, responsible for the p-type electrical nature of NiO, even in undoped samples. Light irradiation on the films leads to a remarkable behavior, because above bandgap light induced a resistivity increase, despite the electron-hole generation. This performance was associated with excitation of the Ni 2+ vacancy level, due to the proximity between energy levels. © 2012 Springer Science+Business Media New York.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lead-free solid solutions (1-x)Bi0.5Na0.5TiO 3 (BNT)-xBaZr0.25Ti0.75O3 (BZT) (x=0, 0.01, 0.03, 0.05, and 0.07) were prepared by the solid state reaction method. X-ray diffraction (XRD) and Rietveld refinement analyses of 1-x(BNT)-x(BZT) solid solution ceramic were employed to study the structure of these systems. A morphotropic phase boundary (MPB) between rhombohedral and cubic structures occured at the composition x=0.05. Raman spectroscopy exhibited a splitting of the (TO3) mode at x=0.05 and confirmed the presence of MPB region. Scanning electron microcopy (SEM) images showed a change in the grain shape with the increase of BZT into the BNT matrix lattice. The temperature dependent dielectric study showed a gradual increase in dielectric constant up to x=0.05 and then decrease with further increase in BZT content. Maximum coercive field, remanent polarization and high piezoelectric constant were observed at x=0.05. Both the structural and electrical properties show that the solid solution has an MPB around x=0.05. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the current article, we studied the effect of yttrium [Y3+] ions' substitution on the structure and electric behavior of barium zirconate titanate (BZT) ceramics with a general formula [Ba1-x Y 2x/3](Zr0.25Ti0.75)O3 (BYZT) with [x = 0, 0.025, 0.05] which were prepared by the solid-state reaction method. X-ray diffraction patterns indicate that these ceramics have a single phase with a perovskite-type cubic structure. Rietveld refinement data confirmed [BaO 12], [ZrO6], [TiO6], [YO6] clusters in the cubic lattice. The Y3+ ions' effects on the electric conductivity behavior of BZT ceramics as a function of temperature and frequency are described, which are based on impedance spectroscopy analyses. The complex impedance plots display a double semicircle which highlights the influences of grain and grain boundary on the ceramics. Impedance analyses showed that the resistance decreased with the increasing temperature and resulted in a negative temperature coefficient of the resistance property in all compositions. Modulus plots represent a non-Debye-type dielectric relaxation which is related to the grain and grain boundary as well as temperature-dependent electric relaxation phenomenon and an enhancement in the mobility barrier by Y3+ ions. Moreover, the electric conductivity increases with the replacement of Ba 2+ by Y3+ ions may be due to the rise in oxygen vacancies. © 2013 The Minerals, Metals & Materials Society and ASM International.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)