119 resultados para Signal restoration
Resumo:
Field trial measurements are used to validate the level crossing rate formula derived in an exact manner recently for the Nakagami-m signal. The formula reveals an excellent fit to measurements in situations other than those for which the Rice model is more appropriate.
Resumo:
Grinding is a finishing process in machining operations, and the topology of the grinding tool is responsible for producing the desired result on the surface of the machined material The tool topology is modeled in the dressing process and precision is therefore extremely important This study presents a solution in the monitoring of the dressing process, using a digital signal processor (DSP) operating in real time to detect the optimal dressing moment To confirm the monitoring efficiency by DSP, the results were compared with those of a data acquisition system (DAQ) and offline processing The method employed here consisted of analyzing the acoustic emission and electrical power signal by applying the DPO and DPKS parameters The analysis of the results allowed us to conclude that the application of the DPO and DPKS parameters can be substituted by processing of the mean acoustic emission signal, thus reducing the computational effort
Resumo:
We investigated the importance of daily free activity in the cage and body weight gain during the recovering of bone structural and mechanical properties in growing rats after hindlimb unloading. Eight-week-old male Wistar rats were randomly divided into control (CG, n=24) and suspended (SG, n=24) groups. Animals from SG underwent a four-week hindlimb unloading period by tail-suspension. Animals from CG and those from SG after release were kept in collective cages and sacrificed at the age of 12, 16 and 20 weeks. Both femurs were removed and its area, bone mineral density (BMD), resistance to failure and stiffness were determined. Four-week hindlimb unloading decreased (p < 0.05) body weight (CG, 373.00 +/- 9.47 vs. SG, 295.86 +/- 9.19 g), BMD (CG, 0.19 +/- 0.01 vs. SG, 0.15 +/- 0.01 g/cm(2)), bone resistance to failure (CG, 147.75 +/- 5.05 vs. SG, 96.40 +/- 5.95 N) and stiffness (CG, 0.38 +/- 0.01 vs. SG, 0.23 +/- 0.02 N/m). Eight weeks of free activity in cage recovered (p > 0.05) the body weight (CG, 472.75 +/- 14.11 vs. SG, 444.75 +/- 18.91 g), BMD (CG, 0.24 +/- 0.01 vs. SG, 0.22 +/- 0.01 g/cm(2)), bone resistance to failure (CG, 195.73 +/- 10.06 vs. SG, 178.45 +/- 8.48 N) and stiffness (CG, 0.56 +/- 0.02 vs. SG, 0.47 +/- 0.03 N/m) of SG animals. Body weight correlated strongly with bone structural and mechanical properties (p < 0.0001). In conclusion, free activity in the cage associated with body weight gain restored bone structural and mechanical properties in growing rats after hindlimb unloading.
Resumo:
Recently, minimum and non-minimum delay perfect codes were proposed for any channel of dimension n. Their construction appears in the literature as a subset of cyclic division algebras over Q(zeta(3)) only for the dimension n = 2(s)n(1), where s is an element of {0,1}, n(1) is odd and the signal constellations are isomorphic to Z[zeta(3)](n) In this work, we propose an innovative methodology to extend the construction of minimum and non-minimum delay perfect codes as a subset of cyclic division algebras over Q(zeta(3)), where the signal constellations are isomorphic to the hexagonal A(2)(n)-rotated lattice, for any channel of any dimension n such that gcd(n,3) = 1. (C) 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
We perform a detailed analysis of the potentiality of the CERN Large Hadron Collider to study the single production of leptoquarks via pp→e±q→ leptoquark →e± q, with e± generated by the splitting of photons radiated by the protons. Working with the most general SU(2)L⊗U( 1 )Y invariant effective Lagrangian for scalar and vector leptoquarks, we analyze in detail the leptoquark signals and backgrounds that lead to a final state containing an e± and a hard jet with approximately balanced transverse momenta. Our results indicate that the LHC will be able to discover leptoquarks with masses up to 2-3 TeV, depending on their type, for Yukawa couplings of the order of the electromagnetic one.
Resumo:
We perform a detailed theoretical study including decays and jet fragmentation of all the important modes of single top quark production and all the basic background processes at the upgraded Fermilab Tevatron and CERN LHC colliders. Special attention is paid to the complete tree level calculation of the QCD fake background which was not considered in previous studies. An analysis of the various kinematical distributions for the signal and backgrounds allow us to work out a set of cuts for an efficient background suppression and extraction of the signal. It is shown that the signal to background ratio after optimized cuts could reach about 0.4 at the Tevatron and 1 at the LHC. The remaining after cuts signal rate at the LHC for the lepton+jets signature is expected to be about 6.1 pb and will be enough to study single top quark physics even during LHC operation at a low luminosity. ©1999 The American Physical Society.
Resumo:
We perform a detailed analyses of the CERN Large Hadron Collider (LHC) capability to discover first generation vector leptoquarks through their pair production. We study the leptoquark signals and backgrounds that give rise to final states containing a pair e+e- and jets. Our results show that the LHC will be able to discover vector leptoquarks with masses up to 1.8-2.3 TeV depending on their couplings to fermions and gluons. ©1999 The American Physical Society.
Resumo:
Group theoretical-based techniques and fundamental results from number theory are used in order to allow for the construction of exact projectors in finite-dimensional spaces. These operators are shown to make use only of discrete variables, which play the role of discrete generator coordinates, and their application in the number symmetry restoration is carried out in a nuclear BCS wave function which explicitly violates that symmetry. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Utilization of contemporary post and core systems has facilitated the aesthetic restoration of endodontically treated teeth. Light transmission and biocompatibility have been enhanced by the introduction of metal-free post systems. The periodontal and endodontic status, root length, and histological structure of the devitalized teeth must be considered in order to achieve successful restoration following endodontic treatment. This article presents various restorative criteria for the aesthetic placement and buildup of post and core materials, as well as the preservation of maximum coronal and root structure.
Resumo:
This paper describes a speech enhancement system (SES) based on a TMS320C31 digital signal processor (DSP) for real-time application. The SES algorithm is based on a modified spectral subtraction method and a new speech activity detector (SAD) is used. The system presents a medium computational load and a sampling rate up to 18 kHz can be used. The goal is load and a sampling rate up to 18 kHz can be used. The goal is to use it to reduce noise in an analog telephone line.
Resumo:
Research on Blindsight, Neglect/Extinction and Phantom limb syndromes, as well as electrical measurements of mammalian brain activity, have suggested the dependence of vivid perception on both incoming sensory information at primary sensory cortex and reentrant information from associative cortex. Coherence between incoming and reentrant signals seems to be a necessary condition for (conscious) perception. General reticular activating system and local electrical synchronization are some of the tools used by the brain to establish coarse coherence at the sensory cortex, upon which biochemical processes are coordinated. Besides electrical synchrony and chemical modulation at the synapse, a central mechanism supporting such a coherence is the N-methyl-D-aspartate channel, working as a 'coincidence detector' for an incoming signal causing the depolarization necessary to remove Mg 2+, and reentrant information releasing the glutamate that finally prompts Ca 2+ entry. We propose that a signal transduction pathway activated by Ca 2+ entry into cortical neurons is in charge of triggering a quantum computational process that accelerates inter-neuronal communication, thus solving systemic conflict and supporting the unity of consciousness. © 2001 Elsevier Science Ltd.
Resumo:
Riparian forest restoration projects in the Tropics are complex, demanding longterm research, continuous human efforts and correct use of financial resources. This paper presents an approach to rank priority areas for riparian forest restoration on the upper section of the Pardo River watershed, in São Paulo, Brazil, using remote sensing and GIS techniques. Pardo River watershed is specially important, since it is the major source of drinking water supply for the region and water for domestic and industrial use within Botucatu and surrounding. Results indicated that riparian restoration should involve 81,27% of the protected area and could be made in three phases, allocating resources according to a priority scale.