250 resultados para Orthogonal polynomials of a discrete variable
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper addresses the problem of model reduction for uncertain discrete-time systems with convex bounded (polytope type) uncertainty. A reduced order precisely known model is obtained in such a way that the H2 and/or the H∞ guaranteed norm of the error between the original (uncertain) system and the reduced one is minimized. The optimization problems are formulated in terms of coupled (non-convex) LMIs - Linear Matrix Inequalities, being solved through iterative algorithms. Examples illustrate the results.
Resumo:
Weight records of Brazilian Nelore cattle, from birth to 630 d of age, recorded every 3 mo, were analyzed using random regression models. Independent variables were Legendre polynomials of age at recording. The model of analysis included contemporary groups as fixed effects and age of dam as a linear and quadratic covariable. Mean trends were modeled through a cubic regression on orthogonal polynomials of age. Up to four sets of random regression coefficients were fitted for animals' direct and maternal, additive genetic, and permanent environmental effects. Changes in measurement error variances with age were modeled through a variance function. Orders of polyno-mial fit from three to six were considered, resulting in up to 77 parameters to be estimated. Models fitting random regressions modeled the pattern of variances in the data adequately, with estimates similar to those from corresponding univariate analysis. Direct heritability estimates decreased after birth and tended to be lowest at ages at which maternal effect estimates tended to be highest. Maternal heritability estimates increased after birth to a peak around 110 to 120 d of age and decreased thereafter. Additive genetic direct correlation estimates between weights at standard ages (birth, weaning, yearling, and final weight) were moderate to high and maternal genetic and environmental correlations were consistently high. © 2001 American Society of Animal Science. All rights reserved.
Resumo:
A total of 20,065 weights recorded on 3016 Nelore animals were used to estimate covariance functions for growth from birth to 630 days of age, assuming a parametric correlation structure to model within-animal correlations. The model of analysis included fixed effects of contemporary groups and age of dam as quadratic covariable. Mean trends were taken into account by a cubic regression on orthogonal polynomials of animal age. Genetic effects of the animal and its dam and maternal permanent environmental effects were modelled by random regressions on Legendre polynomials of age at recording. Changes in direct permanent environmental effect variances were modelled by a polynomial variance function, together with a parametric correlation function to account for correlations between ages. Stationary and nonstationary models were used to model within-animal correlations between different ages. Residual variances were considered homogeneous or heterogeneous, with changes modelled by a step or polynomial function of age at recording. Based on Bayesian information criterion, a model with a cubic variance function combined with a nonstationary correlation function for permanent environmental effects, with 49 parameters to be estimated, fitted best. Modelling within-animal correlations through a parametric correlation structure can describe the variation pattern adequately. Moreover, the number of parameters to be estimated can be decreased substantially compared to a model fitting random regression on Legendre polynomial of age. © 2004 Elsevier B.V. All rights reserved.
Resumo:
The objectives of the present study were to estimate genetic parameters of monthly test-day milk yield (TDMY) of the first lactation of Brazilian Holstein cows using random regression (RR), and to compare the genetic gains for milk production and persistency, derived from RR models, using eigenvector indices and selection indices that did not consider eigenvectors. The data set contained monthly TDMY of 3,543 first lactations of Brazilian Holstein cows calving between 1994 and 2011. The RR model included the fixed effect of the contemporary group (herd-month-year of test days), the covariate calving age (linear and quadratic effects), and a fourth-order regression on Legendre orthogonal polynomials of days in milk (DIM) to model the population-based mean curve. Additive genetic and nongenetic animal effects were fit as RR with 4 classes of residual variance random effect. Eigenvector indices based on the additive genetic RR covariance matrix were used to evaluate the genetic gains of milk yield and persistency compared with the traditional selection index (selection index based on breeding values of milk yield until 305 DIM). The heritability estimates for monthly TDMY ranged from 0.12 ± 0.04 to 0.31 ± 0.04. The estimates of additive genetic and nongenetic animal effects correlation were close to 1 at adjacent monthly TDMY, with a tendency to diminish as the time between DIM classes increased. The first eigenvector was related to the increase of the genetic response of the milk yield and the second eigenvector was related to the increase of the genetic gains of the persistency but it contributed to decrease the genetic gains for total milk yield. Therefore, using this eigenvector to improve persistency will not contribute to change the shape of genetic curve pattern. If the breeding goal is to improve milk production and persistency, complete sequential eigenvector indices (selection indices composite with all eigenvectors) could be used with higher economic values for persistency. However, if the breeding goal is to improve only milk yield, the traditional selection index is indicated. © 2013 American Dairy Science Association.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, we present a decoding principle for Goppa codes constructed by generalized polynomials, which is based on modified Berlekamp-Massey algorithm. This algorithm corrects all errors up to the Hamming weight $t\leq 2r$, i.e., whose minimum Hamming distance is $2^{2}r+1$.
Resumo:
Weight records of Brazilian Nelore cattle, from birth to 630 d of age, recorded every 3 mo, were analyzed using random regression models. Independent variables were Legendre polynomials of age at recording. The model of analysis included contemporary groups as fixed effects and age of dam as a linear and quadratic covariable. Mean trends were modeled through a cubic regression on orthogonal polynomials of age. Up to four sets of random regression coefficients were fitted for animals' direct and maternal, additive genetic, and permanent environmental effects. Changes in measurement error variances with age were modeled through a variance function. Orders of polynomial fit from three to six were considered, resulting in up to 77 parameters to be estimated. Models fitting random regressions modeled the pattern of variances in the data adequately, with estimates similar to those from corresponding univariate analysis. Direct heritability estimates decreased after birth and tended to be lowest at ages at which maternal effect estimates tended to be highest. Maternal heritability estimates increased after birth to a peak around 110 to 120 d of age and decreased thereafter. Additive genetic direct correlation estimates between weights at standard ages (birth, weaning, yearling, and final weight) were moderate to high and maternal genetic and environmental correlations were consistently high.
Resumo:
Foram utilizados quatorze modelos de regressão aleatória, para ajustar 86.598 dados de produção de leite no dia do controle de 2.155 primeiras lactações de vacas Caracu, truncadas aos 305 dias. Os modelos incluíram os efeitos fixos de grupo contemporâneo e a covariável idade da vaca ao parto. Uma regressão ortogonal de ordem cúbica foi usada para modelar a trajetória média da população. Os efeitos genéticos aditivos e de ambiente permanente foram modelados por meio de regressões aleatórias, usando polinômios ortogonais de Legendre, de ordens cúbicas. Diferentes estruturas de variâncias residuais foram testadas e consideradas por meio de classes contendo 1, 10, 15 e 43 variâncias residuais e de funções de variâncias (FV) usando polinômios ordinários e ortogonais, cujas ordens variaram de quadrática até sêxtupla. Os modelos foram comparados usando o teste da razão de verossimilhança, o Critério de Informação de Akaike e o Critério de Informação Bayesiano de Schwar. Os testes indicaram que, quanto maior a ordem da função de variâncias, melhor o ajuste. Dos polinômios ordinários, a função de sexta ordem foi superior. Os modelos com classes de variâncias residuais foram aparentemente superiores àqueles com funções de variância. O modelo com homogeneidade de variâncias foi inadequado. O modelo com 15 classes heterogêneas foi o que melhor ajustou às variâncias residuais, entretanto, os parâmetros genéticos estimados foram muito próximos para os modelos com 10, 15 ou 43 classes de variâncias ou com FV de sexta ordem.
Resumo:
Foram utilizados 9.374 registros semanais de produção de leite de 302 primeiras lactações de cabras da raça Alpina. A produção de leite no dia do controle foi analisada por meio de um modelo animal, unicarater, de regressão aleatória, em que as funções de covariâncias para os componentes genéticos aditivos e de ambiente permanente foram modeladas por meio das funções de Wilmink, Ali e Schaeffer e por polinômios ortogonais, em uma escala de Legendre de ordens cúbica e quíntica. Assumiu-se, ainda, variância residual homogênea durante toda a lactação e heterogênea com três e quatro classes de variância residual. Os modelos foram comparados pelo critério de informação de Akaike (AIC), pelo critério de informação Bayesiano de Schwar (BIC), pela função de verossimilhança (Ln L), pela visualização das estimativas de variâncias genéticas, de ambiente permanente, fenotípicas e residuais e pelas herdabilidades. O polinômio de Legendre de ordem quíntica, com quatro e três classes de variâncias residuais, e a função de Ali e Schaeffer, com quatro classes de variâncias residuais, foram indicados como os mais adequados pelo AIC, BIC e Ln L. Estes modelos diferiram na partição da variância fenotípica para as variâncias de ambiente permanente, genética e residual apenas no início e no final da lactação. Contudo, a função de Ali e Schaeffer resultou em estimativas negativas de correlação genética entre os controles mais distantes. O polinômio de Legendre de ordem quíntica, assumindo variância residual heterogênea, mostrou-se mais adequado para ajustar a produção de leite no dia do controle de cabras da raça Alpina.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)