178 resultados para Morse oscillator
Resumo:
We study energy localization in a finite one-dimensional Phi(4) oscillator chain with initial energy in a single oscillator of the chain. We numerically calculate the effective number of degrees of freedom sharing the energy on the lattice as a function of time. We find that for energies smaller than a critical value, energy equipartition among the oscillators is reached in a relatively short time. on the other hand, above the critical energy, a decreasing number of particles sharing the energy is observed. We give an estimate of the effective number of degrees of freedom as a function of the energy. Our results suggest that localization is due to the appearance, above threshold, of a breather-like structure. Analytic arguments are given, based on the averaging theory and the analysis of a discrete nonlinear Schrodinger equation approximating the dynamics, to support and explain the numerical results.
Resumo:
We study energy localization on the oscillator chain proposed by Peyrard and Bishop to model DNA. We search numerically for conditions with initial energy in a small subgroup of consecutive oscillators of a finite chain and such that the oscillation amplitude is small outside this subgroup on a long time scale. We use a localization criterion based on the information entropy and verify numerically that such localized excitations exist when the nonlinear dynamics of the subgroup oscillates with a frequency inside the reactive band of the linear chain. We predict a mimium value for the Morse parameter (mu>2.25) (the only parameter of our normalized model), in agreement with the numerical calculations (an estimate for the biological value is mu=6.3). For supercritical masses, we use canonical perturbation theory to expand the frequencies of the subgroup and we calculate an energy threshold in agreement with the numerical calculations.
Resumo:
An approximate expression is constructed for the energy of an anharmonic potential with centrifugal barrier. In order to obtain such an analytical expression, the quasi-exact solvability is used and then a fitting of these exact solutions is done.
Resumo:
A variational analysis of the spiked harmonic oscillator Hamiltonian -d2/dr2 + r2 + lambda/r5/2, lambda > 0, is reported. A trial function automatically satisfying both the Dirichlet boundary condition at the origin and the boundary condition at infinity is introduced. The results are excellent for a very large range of values of the coupling parameter lambda, suggesting that the present variational function is appropriate for the treatment of the spiked oscillator in all its regimes (strong, moderate, and weak interactions).
Resumo:
Energies and wavefunctions are calculated for the bound states of the helium atom in the hyperspherical adiabatic approach by the full inclusion of nonadiabatic couplings. We show that the use of appropriate asymptotic radial boundary conditions not only allows the efficient calculation of energies accurate up to a few ppm for the ground state but also gives increasingly precise results for high-lying excited states with a unique set of equations. The accuracy of the wavefunctions is demonstrated by the calculation of oscillator strengths in the length form for transitions between stares ii S-1(e) and (n + 1) P-1(0) up to n = 29, in agreement with variational calculations.
Resumo:
We show that relativistic mean fields theories with scalar S, and vector V, quadratic radial potentials can generate a harmonic oscillator with exact pseudospin symmetry and positive energy bound states when S = -V. The eigenenergies are quite different from those of the non-relativistic harmonic oscillator. We also discuss a mechanism for perturbatively breaking this, symmetry by introducing a tensor potential. Our results shed light into the intrinsic relativistic nature of the pseudospin symmetry, which might be important in high density systems such as neutron stars.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We make a change of variables and a time reparametrization in the Schrödinger equation in order to obtain the propagator of a charged oscillator with a time-dependent mass and frequency under the influence of time-varying electric and magnetic fields, in terms of the simple propagators of harmonic oscillators with constant frequencies and masses. We also discuss the Jackiw transformation and others as a particular case of ours. © 1991.
Resumo:
A perturbative study of a class of nonsingular spiked harmonic oscillators defined by the Hamiltonian H= -d2/dr2 + r2 + λ/rα in the domain [0,∞] is carried out, in the two extremes of a weak coupling and a strong coupling regimes. A path has been found to connect both expansions for α near 2. © 1991 American Institute of Physics.
Resumo:
The problem of a harmonic oscillator coupling to an electromagnetic potential plus a topological-like (Chern-Simons) massive term, in two-dimensional space, is studied in the light of the symplectic formalism proposed by Faddeev and Jackiw for constrained systems.
Resumo:
A harmonic oscillator isospectral potential obtained by supersymmetric algebra applied to quantum mechanics is suggested to simulate DNA H bonds. Thermic denaturation is studied with this potential.
Resumo:
The nearest-neighbor spacing distributions proposed by four models, namely, the Berry-Robnik, Caurier-Grammaticos-Ramani, Lenz-Haake, and the deformed Gaussian orthogonal ensemble, as well as the ansatz by Brody, are applied to the transition between chaos and order that occurs in the isotropic quartic oscillator. The advantages and disadvantages of these five descriptions are discussed. In addition, the results of a simple extension of the expression for the Dyson-Mehta statistic Δ3 are compared with those of a more popular one, usually associated with the Berry-Robnik formalism. ©1999 The American Physical Society.
Resumo:
A general form for ladder operators is used to construct a method to solve bound-state Schrödinger equations. The characteristics of supersymmetry and shape invariance of the system are the start point of the approach. To show the elegance and the utility of the method we use it to obtain energy spectra and eigenfunctions for the one-dimensional harmonic oscillator and Morse potentials and for the radial harmonic oscillator and Coulomb potentials.
Resumo:
A low-voltage, low-power OTA-C sinusoidal oscillator based on a triode-MOSFET transconductor is here discussed. The classical quadrature model is employed and the transconductor inherent nonlinear characteristic with input voltage is used as the amplitude-stabilization element. An external bias VTUNE linearly adjusts the oscillation frequency. According to a standard 0.8μm CMOS n-well process, a prototype was integrated, with an effective area of 0.28mm2. Experimental data validate the theoretical analysis. For a single 1.8V-supply and 100mV≤VTUNE≤250mV, the oscillation frequency fo ranges from 0.50MHz to 1.125MHz, with a nearly constant gain KVCO=4.16KHz/mV. Maximum output amplitude is 374mVpp @1.12MHz. THD is -41dB @321mVpp. Maximum average consumption is 355μW.