109 resultados para Adaptive system theory
Resumo:
In the limit of small values of the aspect ratio parameter (or wave steepness) which measures the amplitude of a surface wave in units of its wave-length, a model equation is derived from the Euler system in infinite depth (deep water) without potential flow assumption. The resulting equation is shown to sustain periodic waves which on the one side tend to the proper linear limit at small amplitudes, on the other side possess a threshold amplitude where wave crest peaking is achieved. An explicit expression of the crest angle at wave breaking is found in terms of the wave velocity. By numerical simulations, stable soliton-like solutions (experiencing elastic interactions) propagate in a given velocities range on the edge of which they tend to the peakon solution. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We construct the finite temperature field theory of the two-dimensional ghost-antighost system within the framework of thermo field theory. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We discuss the matching of the BPS part of the spectrum for a (super) membrane, which gives the possibility of getting the membrane's results via string calculations. In the small coupling limit of M theory the entropy of the system coincides with the standard entropy of type IIB string theory (including the logarithmic correction term). The thermodynamic behavior at a large coupling constant is computed by considering M theory on a manifold with a topology T-2 x R-9. We argue that the finite temperature partition functions (brane Laurent series for p not equal 1) associated with the BPS p-brane spectrum can be analytically continued to well-defined functionals. It means that a finite temperature can be introduced in brane theory, which behaves like finite temperature field theory. In the limit p --> 0 (point particle limit) it gives rise to the standard behavior of thermodynamic quantities.
Resumo:
In previous publications, the concepts of dressed coordinates and dressed states have been introduced in the context of a harmonic oscillator linearly coupled to an infinity set of other harmonic oscillators. In this paper, we show how to generalize such dressed coordinates and. states to a nonlinear version of the mentioned system. Also, we clarify some misunderstandings about the concept of dressed coordinates. Indeed, now we: prefer to call them renormalized coordinates to emphasize the analogy with the renormalized fields in quantum field theory.
Resumo:
We discuss the phi(6) theory defined in D=2+1-dimensional space-time and assume that the system is in equilibrium with a thermal bath at temperature beta(-1). We use the 1/N expansion and the method of the composite operator (Cornwall, Jackiw, and Tomboulis) for summing a large set of Feynman graphs. We demonstrate explicitly the Coleman-Mermin-Wagner theorem at finite temperature.
Resumo:
We discuss the phi(6) theory defined in D = 2 + 1-dimensional space-time and assume that the system is in equilibrium with a thermal bath at temperature beta(-1). We use the 1/N expansion and the method of composite operator (CJT) for summing a large set of Feynman graphs. We demonstrate explicitly the Coleman-Mermin-Wagner theorem at finite temperature.
Resumo:
In a simplest case we employ dimensional regularization method in order to evaluate the contribution of two pion exchanges to the NN interaction. The method allows one to treat the infinities of scattering amplitude in a way consistent with the symmetries of the theory.
Resumo:
We study the two-alpha-particle (alpha alpha) system in an Effective Field Theory (EFT) for halo-like systems. We propose a power Counting that incorporates the subtle interplay of strong and electromagnetic forces leading to a narrow resonance at an energy of about 0.1 MeV. We investigate the EFT expansion in detail, and compare its results with existing low-energy aa phase shifts and previously determined effective-range parameters. Good description of the data is obtained with a surprising amount of fine-tuning. This scenario can be viewed as an expansion around the limit where, when electromagnetic interactions are turned off, the (8)Be ground state is at threshold and exhibits conformal invariance. We also discuss possible extensions to systems with more than two alpha particles. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Robotic vehicle navigation in unstructured and uncertain environments is still a challenge. This paper presents the implementation of a multivalued neurofuzzy controller for autonomous ground vehicle (AGVs) in indoor environments. The control system consists of a hierarchy of mobile robot using multivalued adaptive neuro-fuzzy inference system behaviors.
Resumo:
In this paper, a loads transportation system in platforms or suspended by cables is considered. It is a monorail device and is modeled as an inverted pendulum built on a car driven by a dc motor the governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the dc motor and the dynamical system, that is, we have a so called nonideal periodic problem. The problem is analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, we also analyze the problem quantitatively using the Floquet multipliers technique. Finally, we devise a control for the studied nonideal problem. The method that was used for analysis and control of this nonideal periodic system is based on the Chebyshev polynomial exponsion, the Picard iterative method, and the Lyapunov-Floquet transformation (L-F transformation). We call it Sinha's theory.
Resumo:
We compute the semiclassical magnetization and susceptibility of non-interacting electrons, confined by a smooth two-dimensional potential and subjected to a uniform perpendicular magnetic field, in the general case when their classical motion is chaotic. It is demonstrated that the magnetization per particle m(B) is directly related to the staircase function N(E), which counts the single-particle levels up to energy E. Using Gutzwiller's trace formula for N, we derive a semiclassical expression for m. Our results show that the magnetization has a non-zero average, which arises from quantum corrections to the leading-order Weyl approximation to the mean staircase and which is independent of whether the classical motion is chaotic or not. Fluctuations about the average are due to classical periodic orbits and do represent a signature of chaos. This behaviour is confirmed by numerical computations for a specific system.
Resumo:
In this paper, we study the flow on three invariant sets of dimension five for the classical Bianchi IX system. In these invariant sets, using the Darboux theory of integrability, we prove the non-existence of periodic solutions and we study their dynamics. Moreover, we find three invariant sets of dimension four where the flow is integrable.