Bekenstein bound in asymptotically free field theory
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
30/09/2013
20/05/2014
30/09/2013
20/05/2014
03/08/2010
|
Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) For spatially bounded free fields, the Bekenstein bound states that the specific entropy satisfies the inequality S/E <= 2 pi R, where R stands for the radius of the smallest sphere that circumscribes the system. The validity of the Bekenstein bound in the asymptotically free side of the Euclidean (lambda phi(4))d scalar field theory is investigated. We consider the system in thermal equilibrium with a reservoir at temperature beta(-1) and defined in a compact spatial region without boundaries. Using the effective potential, we discuss the thermodynamic of the model. For low and high temperatures the system presents a condensate. We present the renormalized mean energy E and entropy S for the system and show in which situations the specific entropy satisfies the quantum bound. |
Formato |
11 |
Identificador |
http://dx.doi.org/10.1103/PhysRevD.82.045001 Physical Review D. College Pk: Amer Physical Soc, v. 82, n. 4, p. 11, 2010. 1550-7998 http://hdl.handle.net/11449/24431 10.1103/PhysRevD.82.045001 WOS:000280554200001 WOS000280554200001.pdf |
Idioma(s) |
eng |
Publicador |
Amer Physical Soc |
Relação |
Physical Review D |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |