139 resultados para thermal stimulation method
Resumo:
This study compared pressure and thermal thresholds after administration of three opioids in eight cats. Pressure stimulation was performed via a bracelet taped around the forearm. Three ball-bearings were advanced against the forearm by inflation of a modified blood pressure bladder. Pressure in the cuff was recorded at the end point (leg shake and head turn). Thermal threshold was tested as previously reported using a heated probe held against the thorax [Dixon et al. (2002) Research in Veterinary Science, 72, 205]. After baseline recordings, each cat received subcutaneous methadone 0.2 mg/kg, morphine 0.2 mg/kg, buprenorphine 0.02 mg/kg or saline 0.3 mL in a four period cross-over study. Measurements were made at 15, 30, 45 min and 1, 2, 3, 4, 8, 12 and 24 h after the injection. Data were analysed by ANOVA (P < 0.05). There were no significant changes in thresholds after saline. Thermal threshold increased at 45 min after buprenorphine (maximum 2.8 +/- 3 degrees C), 1-3 h after methadone (maximum 3.4 +/- 1.9 degrees C) and 45 min to 1 h (maximum 3.4 +/- 2 degrees C) after morphine. Pressure threshold increased 30-45 min (maximum 238 +/- 206 mmHg) after buprenorphine, 45-60 min after methadone (maximum 255 +/- 232 mmHg) and 45-60 min and 3-6 h (maximum 255 +/- 232 mmHg) after morphine. Morphine provided the best analgesia, and methadone appears a promising alternative. Buprenorphines limited effect was probably related to the subcutaneous route of administration. Previously, buprenorphine has produced much greater effects when given by other routes.
Effects of meperidine or saline on thermal, mechanical and electrical nociceptive thresholds in cats
Resumo:
Objective To measure cutaneous electrical nociceptive thresholds in relation to known thermal and mechanical stimulation for nociceptive threshold detection in cats.Study design Prospective, blinded, randomized cross-over study with 1-week washout interval.Animals Eight adult cats [bodyweight 5.1 +/- 1.8 kg (mean + SD)].Methods Mechanical nociceptive thresholds were tested using a step-wise manual inflation of a modified blood pressure bladder attached to the cat's thoracic limb. Thermal nociceptive thresholds were measured by increasing the temperature of a probe placed on the thorax. The electrical nociceptive threshold was tested using an escalating current from a constant current generator passed between electrodes placed on the thoracic region. A positive response (threshold) was recorded when cats displayed any or all of the following behaviors: leg shake, head turn, avoidance, or vocalization. Four baseline readings were performed before intramuscular injection of meperidine (5 mg kg(-1)) or an equal volume of saline. Threshold recordings with each modality were made at 15, 30, 45, 60, 90, and 120 minutes post-injection. Data were analyzed using ANOVA and paired t-tests (significance at p < 0.05).Results There were no significant changes in thermal, mechanical, or electrical thresholds after saline. Thermal thresholds increased at 15-60 minutes (p < 0.01) and mechanical threshold increased at 30 and 45 minutes after meperidine (p < 0.05). Maximum thermal threshold was +4.1 +/- 0.3 degrees C above baseline at 15 minutes while maximum mechanical threshold was 296 +/- 265 mmHg above baseline at 30 minutes after meperidine. Electrical thresholds following meperidine were not significantly different than baseline (p > 0.05). Thermal and electrical thresholds after meperidine were significantly higher than saline at 30 and 45 minutes (p < 0.05), and at 120 minutes (p < 0.05), respectively. Mechanical thresholds were significantly higher than saline treatment at 30 minutes (p <= 0.05).Conclusion and clinical relevance Electrical stimulation did not detect meperidine analgesia whereas both thermal and mechanical thresholds changed after meperidine administration in cats.
Resumo:
Objective: Our goal was to investigate the surface temperature variations in the cervical region via infrared thermography, as well as the temperature within the pulp chamber via thermocouples, of mandibular incisors when subjected to dental bleaching using two different 35% hydrogen peroxide gels, red (HP) and green (HPM), when activated by halogen light (HL) and LED light.Background Data: Temperatures increases of more than 5.5 degrees C are considered to be potentially threatening to pulp vitality, while those higher than 10 degrees C can result in periodontal injury.Materials and Methods: Tooth samples were randomly divided into four groups (n = 10 each), according to the bleaching agent and catalyst light source used.Results: Mean values and standard deviations of the temperature increases inside the pulp chamber in the HL groups were 4.4 degrees +/- 2.1 degrees C with HP, and 4.5 degrees +/- 1.2 degrees C with HPM; whereas in the groups using LED light, they were 1.4 degrees +/- 0.3 degrees C for HP, and 1.5 degrees +/- 0.2 degrees C for HPM. For the root surfaces, the maximum temperature increases in the groups irradiated with HL were 6.5 degrees +/- 1.5 degrees C for HP, and 7.5 degrees +/- 1.1 degrees C with HPM; whereas in the groups irradiated with LED light, they were 2.8 degrees +/- 0.7 degrees C with HP, and 3 degrees +/- 0.8 degrees C with HPM. There were no statistically significant differences in pulp and surface temperature increases between the groups using different gels, although the mean temperature increases were significantly higher for the groups irradiated with HL when compared with those irradiated with the LED light (p < 0.05 with Tukey's test).Conclusion: LED light may be safe for periodontal and pulp tissue when using this method, but HL should be used with care.
Resumo:
The Brazilian sugarcane industry shows a great amount of generated sludge which should be utilized adequately. Two sludge samples, aerobic and anaerobic, were collected. Both were evaluated by thermogravimetry and differential thermal analysis (DTA) as well as X-ray power diffraction. These compounds show variations of mass between 30 and 140 A degrees C due to the dehydration stage. The DTA curves show that the compounds have an exothermic reaction between 450 and 550 A degrees C, which indicates that this can be used as an energy source. Details concerning the kinetic parameters of the dehydration and thermal decomposition have also been described here. The kinetic study of these stages was evaluated in open crucibles under nitrogen atmosphere. The obtained data were evaluated with the isoconversional kinetic method. The results show that different activation energies were obtained for thermal decomposition.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Meglumine, (2R,3R,4R,5S)-6-methylaminohexane-1,2,3,4,5-pentol, is a carbohydrate derived from sorbitol in which the hydroxyl group in position one is replaced by a methylamine group. It forms binary adducts with substances having carboxyl groups, which have in common the presence of hydrogen bonding as the main force in the stabilization of these species. During melting, adducts of meglumine with flunixin (2-[[2-methyl-3-(trifluoromethyl)phenyl]amino]pyridine-3-carboxylic acid) polymerize or self-assemble in amorphous supramolecular structures with molecular weights around 2.0 x 10(5) kDa. DSC curves, in a first heating, show isomorphic transitions where the last one at 137 A degrees C for the flunixin-meglumine adduct originated the supramolecular amorphous polymers with glass transition around 49.5 A degrees C. The kinetic parameters for the thermal decomposition step of the polymers were determined by the Capela-Ribeiro non-linear isoconversional method. From data for the TG curves in nitrogen atmosphere and heating rates of 5, 10, 15, and 20 A degrees C min(-1), the E (alpha) and B (alpha) terms could be determined and, consequently, the pre-exponential factor, A(alpha), as well as the kinetic model, g(alpha).
Resumo:
Cellulose can be obtained from innumerable sources such as cotton, trees, sugar cane bagasse, wood, bacteria, and others. The bacterial cellulose (BC) produced by the Gram-negative acetic-acid bacterium Acetobacter xylinum has several unique properties. This BC is produced as highly hydrated membranes free of lignin and hemicelluloses and has a higher molecular weight and higher crystallinity. Here, the thermal behavior of BC, was compared with those of microcrystalline (MMC) and vegetal cellulose (VC). The kinetic parameters for the thermal decomposition step of the celluloses were determined by the Capela-Ribeiro non-linear isoconversional method. From data for the TG curves in nitrogen atmosphere and at heating rates of 5, 10, and 20 A degrees C/min, the E(alpha) and B(alpha) terms could be determined and consequently the pre-exponential factor A(alpha) as well as the kinetic model g(alpha). The pyrolysis of celluloses followed kinetic model g(alpha) = [-ln(1 - alpha)](1.63) on average, characteristic for Avrami-Erofeev with only small differences in activation energy. The fractional value of n may be related to diffusion-controlled growth, or may arise from the distributions of sizes or shapes of the reactant particles.
Resumo:
The generalized temperature integral I(m, x) appears in non-isothermal kinetic analysis when the frequency factor depends on the temperature. A procedure based on Gaussian quadrature to obtain analytical approximations for the integral I(m, x) was proposed. The results showed good agreement between the obtained approximation values and those obtained by numerical integration. Unless other approximations found in literature, the methodology presented in this paper can be easily generalized in order to obtain approximations with the maximum of accurate.
Resumo:
The non-isothermal data given by TG curves for poly(3-hydroxybutyrate) (PHB) were studied in order to obtain a consistent kinetic model that better represents the PHB thermal decomposition. Thus, data obtained from the dynamic TG curves were suitably managed in order to obtain the Arrhenius kinetic parameter E according to the isoconversional F-W-O method. Once the E parameters is found, a suitable logA and kinetic model (f(alpha)) could be calculated. Hence, the kinetic triplet (E +/- SD, logA +/- SD and f(alpha)) obtained for the thermal decomposition of PHB under non-isothermal conditions was E=152 +/- 4 kJ mol(-1), logA=14.1 +/- 0.2 s(-1) for the kinetic model, and the autocatalytic model function was: f(alpha)=alpha(m)(1-alpha)(n)=alpha(0.42)(1-alpha)(0.56).
Resumo:
The dehydration, thermal decomposition and transition phase stage of Zn(II)-diclofenac compound were studied by simultaneous TG-DTA and DSC techniques. The TG and DSC curves of this compound were obtained with the mass of sample of 2 and 5 mg. Additionally, DSC curves were carried out in opened and closed alpha-alumina pans under static and nitrogen atmosphere. The DTA and DSC curves show that this compound possesses exothermic transition phase between 170-180 degrees C, which it is irreversible (monotropic reaction) The kinetics study of this transition phase stage was evaluated by DSC under non-isothermal conditions. The obtained data were evaluated with the isoconversional method, where the values of activation energy (E(a) / kJ mol(-1)) was plotted in function of the conversion degree (alpha). The results show that due to mass sample, different activation energies were obtained From these curves a tendency can be seen where the plots maintain the same profile for closed lids and almost run parallel to each other.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)