218 resultados para homoclinic chaos
Resumo:
In this paper, we consider non-ideal excitation devices such as DC motors with restrictenergy output capacity. When such motors are attached to structures which needexcitation power levels similar to the source power capacity, jump phenomena and theincrease in power required near resonance characterize the Sommerfeld Effect, actingas a sort of an energy sink. One of the problems often faced by designers of suchstructures is how to drive the system through resonance and avoid this energy sink.Our basic structural model is a simple portal frame driven by a num-ideal powersource-(NIPF). We also investigate the absorption of resonant vibrations (nonlinearand chaotic) by means of a nonlinear sub-structure known as a Nonlinear Energy Sink(NES). An energy exchange process between the NIPF and NES in the passagethrough resonance is investigated, as well the suppression of chaos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper the dynamical interactions of a double pendulum arm and an electromechanical shaker is investigated. The double pendulum is a three degree of freedom system coupled to an RLC circuit based nonlinear shaker through a magnetic field, and the capacitor voltage is a nonlinear function of the instantaneous electric charge. Numerical simulations show the existence of chaotic behavior for some regions in the parameter space and this behaviour is characterized by power spectral density and Lyapunov exponents. The bifurcation diagram is constructed to explore the qualitative behaviour of the system. This kind of electromechanical system is frequently found in robotic systems, and in order to suppress the chaotic motion, the State-Dependent Riccati Equation (SDRE) control and the Nonlinear Saturation control (NSC) techniques are analyzed. The robustness of these two controllers is tested by a sensitivity analysis to parametric uncertainties.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper we study the local codimension one and two bifurcations which occur in a family of three-dimensional vector fields depending on three parameters. An equivalent family, depending on five parameters, was recently proposed as a new chaotic system with a Lorenz-like butterfly shaped attractor and was studied mainly from a numerical point of view, for particular values of the parameters, for which computational evidences of the chaotic attractor was shown. In order to contribute to the understand of this new system we present an analytical study and the bifurcation diagrams of an equivalent three parameter system, showing the qualitative changes in the dynamics of its solutions, for different values of the parameters. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work, we use a nonlinear control based on Optimal Linear Control. We used as mathematical model a Duffing equation to model a supporting structure for an unbalanced rotating machine with limited power (non-ideal motor). Numerical simulations are performed for a set control parameter (depending on the voltage of the motor, that is, in the static and dynamic characteristic of the motor) The interaction of the non-ideal excitation with the structure may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the system. Chaotic behavior is obtained for values of the parameters. Then, the proposed control strategy is applied in order to regulate the chaotic behavior, in order to obtain a periodic orbit and to decrease its amplitude. Both methodologies were used in complete agreement between them. The purpose of the paper is to give suggestions and recommendations to designers and engineers on how to drive this kind of system through resonance.
Resumo:
This paper presents the linear optimal control technique for reducing the chaotic movement of the micro-electro-mechanical Comb Drive system to a small periodic orbit. We analyze the non-linear dynamics in a micro-electro-mechanical Comb Drive and demonstrated that this model has a chaotic behavior. Chaos control problems consist of attempts to stabilize a chaotic system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. This technique is applied in analyzes the nonlinear dynamics in an MEMS Comb drive. The simulation results show the identification by linear optimal control is very effective.