GLOBAL DYNAMICS of THE LORENZ SYSTEM WITH INVARIANT ALGEBRAIC SURFACES
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/10/2010
|
Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) In this paper by using the Poincare compactification of R(3) we describe the global dynamics of the Lorenz system(x) over dot = s(-x + y), (y) over dot = rx - y - xz, (z) over dot = -bz + xy,having some invariant algebraic surfaces. of course ( x, y, z) is an element of R(3) are the state variables and (s, r, b) is an element of R(3) are the parameters. For six sets of the parameter values, the Lorenz system has invariant algebraic surfaces. For these six sets, we provide the global phase portrait of the system in the Poincare ball (i.e. in the compactification of R(3) with the sphere S(2) of the infinity). |
Formato |
3137-3155 |
Identificador |
http://dx.doi.org/10.1142/S0218127410027593 International Journal of Bifurcation and Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 20, n. 10, p. 3137-3155, 2010. 0218-1274 http://hdl.handle.net/11449/7118 10.1142/S0218127410027593 WOS:000286430000006 |
Idioma(s) |
eng |
Publicador |
World Scientific Publ Co Pte Ltd |
Relação |
International Journal of Bifurcation and Chaos |
Direitos |
closedAccess |
Palavras-Chave | #Integrability #Lorenz system #Poincare compactification #dynamics at infinity invariant algebraic surface |
Tipo |
info:eu-repo/semantics/article |