GLOBAL DYNAMICS of THE LORENZ SYSTEM WITH INVARIANT ALGEBRAIC SURFACES


Autoria(s): Llibre, Jaume; Messias, Marcelo; Da Silva, Paulo Ricardo
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/10/2010

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

In this paper by using the Poincare compactification of R(3) we describe the global dynamics of the Lorenz system(x) over dot = s(-x + y), (y) over dot = rx - y - xz, (z) over dot = -bz + xy,having some invariant algebraic surfaces. of course ( x, y, z) is an element of R(3) are the state variables and (s, r, b) is an element of R(3) are the parameters. For six sets of the parameter values, the Lorenz system has invariant algebraic surfaces. For these six sets, we provide the global phase portrait of the system in the Poincare ball (i.e. in the compactification of R(3) with the sphere S(2) of the infinity).

Formato

3137-3155

Identificador

http://dx.doi.org/10.1142/S0218127410027593

International Journal of Bifurcation and Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 20, n. 10, p. 3137-3155, 2010.

0218-1274

http://hdl.handle.net/11449/7118

10.1142/S0218127410027593

WOS:000286430000006

Idioma(s)

eng

Publicador

World Scientific Publ Co Pte Ltd

Relação

International Journal of Bifurcation and Chaos

Direitos

closedAccess

Palavras-Chave #Integrability #Lorenz system #Poincare compactification #dynamics at infinity invariant algebraic surface
Tipo

info:eu-repo/semantics/article