66 resultados para amorphous Ge20As55Se55 films
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Lead calcium titanate (Pb1-xCaxTiO3 or PCT) thin films have been thermally treated under different oxygen pressures, 10, 40 and 80 bar, by using the so-called chemical solution deposition method. The structural, morphological, dielectric and ferroelectric properties were characterized by x-ray diffraction, FT-infrared and Raman spectroscopy, atomic force microscopy and polarization-electric-field hysteresis loop measurements. By annealing at a controlled pressure of around 10 and 40 bar, well-crystallized PCT thin films were successfully prepared. For the sample submitted to 80 bar, the x-ray diffraction, Fourier transformed-infrared and Raman data indicated deviation from the tetragonal symmetry. The most interesting feature in the Raman spectra is the occurrence of intense vibrational modes at frequencies of around 747 and 820 cm(-1), whose presence depends strongly on the amount of the pyrochlore phase. In addition, the Raman spectrum indicates the presence of symmetry-breaking disorder, which would be expected for an amorphous (disorder) and mixed pyrochlore-perovskite phase. During the high-pressure annealing process, the crystallinity and the grain size of the annealed film decreased. This process effectively suppressed both the dielectric and ferroelectric behaviour. Ferroelectric hysteresis loop measurements performed on these PCT films exhibited a clear decrease in the remanent polarization with increasing oxygen pressure.
Resumo:
Diamond-like carbon (DLC) films were obtained by spinning a tungsten carbide substrate at a high speed using an oxyacetylene flame. The films deposited at a typical experimental condition of substrate temperature of 810 degrees C, rotation of 600 rpm and 3 h deposition time, exhibited an uniform, very smooth, hard and glassy surface covering the entire exposed face of the substrate. These films were identified as DLC by their characteristic broad Raman spectra centered at 1554 cm(-1) and micro-Vicker's hardness > 3400 kg mm(-2). For substrate temperatures < 800 degrees C the film started losing the uniform glassy surface and the hardness deteriorated. For temperatures > 950 degrees C the film was still hard and shiny, but black in color. DLC films were also obtained in a wide range of speeds of rotation (300-750 rpm), as long as the temperature remained close to 850 degrees C. (C) 1999 Elsevier B.V. S.A. All rights reserved.
Resumo:
Films of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(propylene) (PP), PP/PHBV (4:1), blends were prepared by melt-pressing and investigated with respect to their microbial degradation in soil after 120 days. Biodegradation of the films was evaluated by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. The biodegradation and/or bioerosion of the PP/PHBV blend was attributed to microbiological attack, with major changes occurring at the interphases of the homopolymers. The PHBV film was more strongly biodegraded in soil, decomposing completely in 30 days, while PP film presented changes in amorphous and interface phase, which affected the morphology.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Structural, optical, electro and photoelectrochemical properties of amorphous and crystalline sol-gel Nb2O5 coatings have been determined. The coatings are n-type semiconductor with indirect allowed transition and present an overall low quantum efficiency (phi < 4%) for UV light to electric conversion. The photoconducting behavior of the coatings is discussed within the framework of the Gartner and Sodergren models. Improvement can be foreseen if Nb2O5 coatings can be made of 10-20 nm size nanoparticles.
Resumo:
Photoluminescence (PL) properties at room temperature of disordered Ba0.50Sr0.50(Ti0.80Sn0.20)O-3 (BST:Sn) thin films were obtained by the polymeric precursor method. X-ray diffraction data and corresponding PL properties have been measured using the 488 nm line of an argon ion laser. The PL spectra of the film annealed at 350 degrees C for 21 h are stronger than those of the film annealed at 350 degrees C for 28 h, indicating a disorganized structure. The energy band gaps of the crystalline and amorphous BST:Sn thin films were 3.35 and 2.25 eV, respectively. The doped BST thin films also tend to a cubic structure, resulting from TiO6 deformations. (c) 2006 American Institute of Physics.
Resumo:
Both narrow and broad photoluminescence bands were observed in Ga1-XAsX films prepared by flash evaporation of polycrystalline GaAs containing native C impurities. The observed narrow crystalline-like bands are similar to band-to-band and C acceptor impurity emissions in crystalline GaAs. The narrow bands are evidence that the As excess favors the PL active GaAs crystallite formation in films deposited onto silicon (10 0) substrate, even when the As excess is very large (X = 0.84). This favoring is not observed in twin samples grown on silica glass substrates nor on Ga rich samples, indicating the important role of the combined effect of the As excess and Si substrate in the GaAs crystallite formation. The broad amorphous-like bands were observed in Ga rich and in moderately As rich samples. The photoluminescence emission is compared with the microstructure of the material as determined from the micro-Raman, absorption edge and reflectance measurements. The volume fraction of the crystallites formed is small and PL emission indicates that the crystallite electronic quality is much better than the ones formed heat treating films grown on silica glass substrates. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Pure and lanthanum-doped Bi4Ti3O12 thin films were deposited on Pt/Ti/SiO2/Si substrate using a polymeric precursor solution. The spin-coated films were specular and crack-free and crystalline after annealing at 700 degreesC for 2 h. Crystallinity and morphological evaluation were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Multilayered films obtained using the intermediate-crystalline layer route present a dense microstructure with spherical grains. Films obtained using the intermediate-amorphous layer, present elongated grains around 250 nm in size. The dielectric and ferroelectric properties of the lanthanum-doped Bi4Ti3O12 films are strongly affected by the crystallization route. The hysteresis loops are fully saturated with a remnant polarization and drive voltage of the films, heat-treated by the intermediate-crystalline (P-r = 20.2 muC/cm(2) and V = 1.35 V) and for the film heat-treated by amorphous route (P-r = 22.4 muC/cm(2) and V = 2.99 V). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We investigate the effect of the hydrogen intentional incorporation on the structural properties of the amorphous gallium arsenide prepared by rf-magnetron sputtering technique. The properties of the non-hydrogenated films are: band gap of 1.4 eV (E-04), Urbach energy of 110 meV, stoichiometric composition ([As]/[Ga] = 0.50), and dark conductivity of about 3.2 x 10(-5) (Omega.cm)(-1). Hydrogen was incorporated in the films by the introduction of an electronically controlled H-2 flux during deposition, keeping constant the other deposition parameters. It was observed that small hydrogen incorporation produces a great change in the structural properties of the films. The main changes result from the formation of GaAs nanocrystals with mean sizes of about 7 nm into the amorphous network.
Resumo:
Amorphous and crystalline thin films of Mn-doped(0.5%-10%) GaAs and crystalline thin films of Zn1-xCoxO(x = 3%-20%) were investigated by means of magnetic susceptibility and electron spin resonance (ESR). For the Mn-doped GaAs samples, our results show the absence of ferromagnetic ordering for the amorphous films in the 300 > T > 2 K temperature range, in contrast to the ferromagnetism found in crystalline films for T-C < 110 K. A single ESR line with a temperature independent g-value (g similar to 2) is observed for the amorphous films, and the behavior of this ESR linewidth depends on the level of crystallinity of the film. For the Mn-doped GaAs crystalline films, only a ferromagnetic mode is observed for T < TC when the film is ferromagnetic. Turning now the Zn1-xCoxO films, ferromagnetic loops were observed at room temperature for these films. The magnetization data show an increasing of the saturation magnetization M. as a function of x reaching a maximum value for x approximate to 10%. ESR experiments at T = 300 K in the same films show a strong anisotropic ferromagnetic mode (FMR) for x = 0.10.
Resumo:
The polymeric precursor method was used to prepare multi-layered LiNbO3 films. The overall process consists of preparing a coating solution from the Pechini process and the deposited film is subsequently heat-treated. Two-layered films were prepared by this process, onto (0001) sapphire substrates. Two different routes were investigated for the heat-treatment. The amorphous route consisted of performing, after each deposition, a pre-treatment at low temperature to eliminate the organic material. In this case, the crystallization heat-treatment was performed only after the two layers had been deposited. on the other hand, a process layer-after-layer crystallization was used. Both routes led to (0001) LiNbO3 oriented films. However, only the film prepared by the layer-after-layer crystallization presented an epitaxial growth and a crack-free morphology. Moreover, the layer-after-layer crystallization process led to a film exhibiting the best optical properties. (C) 2001 Elsevier B.V. Ltd. All rights reserved.