94 resultados para POLYMER-FILMS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Thin films were deposited from hexamethyldisiloxane (HMDSO) in a glow discharge supplied with radiofrequency (rf) power. Actino-metric optical emission spectroscopy was used to follow trends in the plasma concentrations of the species SiH (414.2 nm), CH (431.4 nm), CO (520.0 nm), and H (656.3 nm) as a function of the applied rf power (range 5 to 35 W). Transmission infrared spectroscopy (IRS) was employed to characterize the molecular structure of the polymer, showing the presence of Si-H, Si-O-Si, Si-O-C and C-H groups. The deposition rate, determined by optical interferometry, ranged from 60 to 130 nm/min. Optical properties were determined from transmission ultra violet-visible spectroscopy (UVS) data. The absorption coefficient α, the refractive index n, and the optical gap E04 of the polymer films were calculated as a function of the applied power. The refractive index at a photon energy of 1 eV varied from 1.45 to 1.55, depending on the rf power used for the deposition. The absorption coefficient showed an absorption edge similar to other non-crystalline materials, amorphous hydrogenated carbon, and semiconductors. For our samples, we define as an optical gap, the photon energy E04 corresponding to the energy at an absorption of 104 cm-1. The values of E04 decreased from 5.3 to 4.6 as the rf power was increased from 5 to 35 W. © 1995.
Resumo:
Flexible standing films of piezoelectric composite made of lead zirconate titanate (PZT) ceramic powder and Poly(3-hydroxybutyrate) (PHB) in powder form were obtained by mixing both polymers mechanically and pressed at 180°C. The piezoelectric coefficient d33 were investigated as function of PZT content, poling temperature and electric field. The highest value for d 33 coefficient was around 6pC/N for 50 vol% of PZT content in the composite. As PHB is a biodegradable polymer the composite has potential application as sensor minimizing the environmental problems.
Resumo:
The phase transition from the non-polar α-phase to the polar β-phase of poly(vinylidene fluoride) (PVDF) has been investigated using micro-Raman spectroscopy, which is advantageous for being a non-destructive technique. Films of α-PVDF were subjected to stretching under controlled rates and at 80°C, the transition to β-PVDF being monitored by the decrease in the Raman band at 794 cm-1 characteristic of the α-phase, with the concomitant increase in the 839 cm-1 band characteristic of the β-phase. Poling with negative corona discharge was found to affect the a-PVDF morphology improving the Raman bands related to this crystalline phase. This effect is minimized for films stretched to higher ratios. Significantly, corona-induced effects could not be observed with the other experimental techniques, viz. X-ray diffraction and infrared spectroscopy.
Preparation and characterization of castor oil-based polyurethane/poly(o- methoxyaniline) blend film
Resumo:
Blends made up of castor oil-based polyurethane (PU) and poly(o-methoxyaniline) (POMA) were obtained in the form of films by casting and characterized by FTIR, UV-Vis-NIR spectroscopy, and electrical conductivity measurements. Doping was carried out by immersing the films in 1.0M HCl aqueous solution. Chemical bonds between NCO group of PU and NH group of POMA were observed by means of FTIR spectra. The UV-Vis-NIR spectra indicated that the presence of the PU in the blend does not affect doping and formation of the POMA phase. The electrical conductivity research was in the range of 10-3 S/cm. © 2007 Wiley Periodicals, Inc.
Resumo:
ITO nanowires were synthesized by carbothermal reduction process, using a co-evaporation method, and have controlled size, shape, and chemical composition. The electrical measurements of nanowires showed they have a resistance of about 102 Ω. In order to produce nanocomposites films, nanowires were dispersed in toluene using an ultrasonic cleaner, so the PMMA polymer was added, and the system was kept under agitation up to obtain a clear suspension. The PMMA polymer was filled with 1, 2, 5 and 10% in weight of nanowires, and the films were done by tape casting. The results showed that the electrical resistance of nanocomposites changed by over 7 orders of magnitude by increasing the amount of filler, and using 5 wt% of filler the composite resistance decreased from 1010 Ω to about 104 Ω, which means that percolation threshold of wires occurred at this concentration. This is an interesting result once for nanocomposites filled with ITO nanoparticles is necessary about 18% in weight to obtain percolation. The addition of filler up to 10 wt% decreased the resistance of the composite to 103 Ω, which is a value close to the resistance of wires. The composites were also analyzed by transmission electron microscopy (TEM), and the TEM results are in agreement with the electrical ones about percolation of nanowires. These results are promising once indicates that is possible to produce conductive and transparent in the visible range films by the addition of ITO nanowires in a polymeric matrix using a simple route. © 2011 Materials Research Society.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)