122 resultados para Network expansion planning
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, a hybrid heuristic methodology that employs fuzzy logic for solving the AC transmission network expansion planning (AC-TEP) problem is presented. An enhanced constructive heuristic algorithm aimed at obtaining a significant quality solution for such complicated problems considering contingency is proposed. In order to indicate the severity of the contingency, 2 performance indices, namely the line flow performance index and voltage performance index, are calculated. An interior point method is applied as a nonlinear programming solver to handle such nonconvex optimization problems, while the objective function includes the costs of the new transmission lines as well as the real power losses. The performance of the proposed method is examined by applying it to the well-known Garver system for different cases. The simulation studies and result analysis demonstrate that the proposed method provides a promising way to find an optimal plan. Obtaining the best quality solution shows the capability and the viability of the proposed algorithm in AC-TEP. © Tübi̇tak..
Resumo:
This study presents a new methodology based on risk/investment to solve transmission network expansion planning (TNEP) problem with multiple future scenarios. Three mathematical models related to TNEP problems considering multiple future generation and load scenarios are also presented. These models will provide planners with a meaningful risk assessment that enable them to determine the necessary funding for transmission lines at a permissible risk level. The results using test and real systems show that the proposed method presents better solutions compared with scenario analysis method. ©The Institution of Engineering and Technology 2013.
Resumo:
The usefulness of the application of heuristic algorithms in the transportation model, first proposed by Garver, is analysed in relation to planning for the expansion of transmission systems. The formulation of the mathematical model and the solution techniques proposed in the specialised literature are analysed in detail. Starting with the constructive heuristic algorithm proposed by Garver, an extension is made to the problem of multistage planning for transmission systems. The quality of the solutions found by heuristic algorithms for the transportation model is analysed, as are applications in problems of planning transmission systems.
Resumo:
In this paper, an efficient genetic algorithm (GA) is presented to solve the problem of multistage and coordinated transmission expansion planning. This is a mixed integer nonlinear programming problem, difficult for systems of medium and large size and high complexity. The GA presented has a set of specialized genetic operators and an efficient form of generation of the initial population that finds high quality suboptimal topologies for large size and high complexity systems. In these systems, multistage and coordinated planning present a lower investment than static planning. Tests results are shown in one medium complexity system and one large size high complexity system.
Resumo:
We present a bilevel model for transmission expansion planning within a market environment, where producers and consumers trade freely electric energy through a pool. The target of the transmission planner, modeled through the upper-level problem, is to minimize network investment cost while facilitating energy trading. This upper-level problem is constrained by a collection of lower-level market clearing problems representing pool trading, and whose individual objective functions correspond to social welfare. Using the duality theory the proposed bilevel model is recast as a mixed-integer linear programming problem, which is solvable using branch-and-cut solvers. Detailed results from an illustrative example and a case study are presented and discussed. Finally, some relevant conclusions are drawn.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A branch and bound (B& B) algorithm using the DC model, to solve the power system transmission expansion planning by incorporating the electrical losses in network modelling problem is presented. This is a mixed integer nonlinear programming (MINLP) problem, and in this approach, the so-called fathoming tests in the B&B algorithm were redefined and a nonlinear programming (NLP) problem is solved in each node of the B& B tree, using an interior-point method. Pseudocosts were used to manage the development of the B&B tree and to decrease its size and the processing time. There is no guarantee of convergence towards global optimisation for the MINLP problem. However, preliminary tests show that the algorithm easily converges towards the best-known solutions or to the optimal solutions for all the tested systems neglecting the electrical losses. When the electrical losses are taken into account, the solution obtained using the Garver system is better than the best one known in the literature.
Resumo:
Transmission expansion planning (TEP) is a non-convex optimization problem that can be solved via different heuristic algorithms. A variety of classical as well as heuristic algorithms in literature are addressed to solve TEP problem. In this paper a modified constructive heuristic algorithm (CHA) is proposed for solving such a crucial problem. Most of research papers handle TEP problem by linearization of the non-linear mathematical model while in this research TEP problem is solved via CHA using non-linear model. The proposed methodology is based upon Garver's algorithm capable of applying to a DC model. Simulation studies and tests results on the well known transmission network such as: Garver and IEEE 24-bus systems are carried out to show the significant performance as well as the effectiveness of the proposed algorithm. © 2011 IEEE.
Resumo:
This paper proposes strategies to reduce the number of variables and the combinatorial search space of the multistage transmission expansion planning problem (TEP). The concept of the binary numeral system (BNS) is used to reduce the number of binary and continuous variables related to the candidate transmission lines and network constraints that are connected with them. The construction phase of greedy randomized adaptive search procedure (GRASP-CP) and additional constraints, obtained from power flow equilibrium in an electric power system are employed for more reduction in search space. The multistage TEP problem is modeled like a mixed binary linear programming problem and solved using a commercial solver with a low computational time. The results of one test system and two real systems are presented in order to show the efficiency of the proposed solution technique. © 1969-2012 IEEE.
Resumo:
This article presents a well-known interior point method (IPM) used to solve problems of linear programming that appear as sub-problems in the solution of the long-term transmission network expansion planning problem. The linear programming problem appears when the transportation model is used, and when there is the intention to solve the planning problem using a constructive heuristic algorithm (CHA), ora branch-and-bound algorithm. This paper shows the application of the IPM in a CHA. A good performance of the IPM was obtained, and then it can be used as tool inside algorithm, used to solve the planning problem. Illustrative tests are shown, using electrical systems known in the specialized literature. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Neste trabalho é analisada a aplicação de algoritmos heurísticos para o Modelo Híbrido Linear - Hybrid Linear Model (HLM) - no problema de planejamento da expansão de sistemas de transmissão. O HLM é um modelo relaxado que ainda não foi suficientemente explorado. Assim, é realizada uma análise das características do modelo matemático e das técnicas de solução que podem ser usadas para resolver este tipo de modelo. O trabalho analisa em detalhes um algoritmo heurístico construtivo para o HLM e faz uma extensão da modelagem e da técnica de solução para o planejamento multi-estágio da expansão de sistemas de transmissão. Dentro deste contexto, também é realizada uma avaliação da qualidade das soluções encontradas pelo HLM e as possibilidades de aplicação deste modelo em planejamento de sistemas de transmissão. Finalmente, são apresentados testes com sistemas conhecidos na literatura especializada.
Resumo:
In this letter, a genetic algorithm (GA) is applied to solve - the static and multistage transmission expansion planning (TEP) problem. The characteristics of the proposed GA to solve the TEP problem are presented. Results using some known systems show that the proposed GA solves a smaller number of linear programming problems in order to find the optimal solutions and obtains a better solution for the multistage TEP problem.
Resumo:
The generation expansion planning (GEP) problem consists in determining the type of technology, size, location and time at which new generation units must be integrated to the system, over a given planning horizon, to satisfy the forecasted energy demand. Over the past few years, due to an increasing awareness of environmental issues, different approaches to solve the GEP problem have included some sort of environmental policy, typically based on emission constraints. This paper presents a linear model in a dynamic version to solve the GEP problem. The main difference between the proposed model and most of the works presented in the specialized literature is the way the environmental policy is envisaged. Such policy includes: i) the taxation of CO(2) emissions, ii) an annual Emissions Reduction Rate (ERR) in the overall system, and iii) the gradual retirement of old inefficient generation plants. The proposed model is applied in an 11-region to design the most cost-effective and sustainable 10-technology US energy portfolio for the next 20 years.