112 resultados para Natural Rubber


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural rubber latex from Hevea brasiliensis has interesting characteristics related to this work such as: it is easy to manipulate, low cost, can stimulate the natural angiogenesis, is a biocompatible material and presents high mechanical resistance. The aim of this study was to develop a novel sustained delivery system for Stryphnodendron sp. based on Natural Rubber Latex (NRL) membranes and to study the Stryphnodendron sp. delivery system behavior. Stryphnodendron sp., commonly known as barbatimao is extensively used in folk medicine for the treatment of diarrhoea, gynaecological problems and for healing wounds. The stem bark of this species is mentioned in the Brazilian Pharmacopeia with a content of at least 20% of tannins. Previous studies showed significant cicatrizant properties, anti-inflammatory activity and gastric anti-ulcerogenic effects for the stem bark crude extract. One possible way to accelerate the tissue repair process, it was incorporated the Stryphnodendron sp. extract in NRL membranes. Stryphnodendron sp extract was incorporated into the NRL, by mixing it in solution for in vitro protein delivery experiments. Results show that the NRL membrane can release Stryphnodendron sp. for up to 49.89% of its Stryphnodendron sp. content for up 400 h. The kinetics of the extract release could be fitted with double exponential function, with two characteristic times of 0.78 and 133.22 h. In this study, we demonstrated that the induced angiogenesis provided by NRL membranes combined with a controlled release of extract is relevant for biomedical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Natural Rubber Latex (NRL) from Hevea brasiliensis has shown promise in biomedical applications due to its low cost, easy handling, mechanical properties and biocompatibility, being used for bone regeneration and wound healing due to its natural stimulus to angiogenesis. The aim of this work was to incorporate Casearia sylvestris Sw. extract in NRL biomembranes and study its release behavior. The complex membrane-extract has as object of study a new approach of using C. sylvestris extract in the treatment of wounds, for possessing antiseptic activity, anti-inflammatory and analgesic properties. The C. sylvestris species (Salicaceae), popularly known as "guaçatonga", presents great distribution and is used in folk medicine as antiulcer, wound healing, anti-snake venom, properties which have been proven and related to clerodane diterpenes (casearins A-X). The release rate of C. sylvestris compounds from extract-membrane complex was monitored and analyzed using the method of optical spectroscopy (UV-VIS). The release varied with temperature ranging from 14 to 33 days, releasing more than 90%, with an interesting and promising biomedical application, such as wound healing and burns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes a new approach of recycling the leather waste (shavings) using it as filler in natural rubber foams composites. The foams were prepared using different amounts of leather waste (0-60 parts per hundred of rubber) and submitted to morphological (SEM microscopy) and mechanical analyses (cyclic stress-strain compression). The increase of leather shavings on the composite causes an increase of viscosity in the mixture, which reflects in the foaming process. This results in smaller and fairly uniform cells. Furthermore, expanded rubber has the biggest cell size, with more than 70% of cell with 1000 mu m, while the composite with the higher concentration of leather has around 80% of total number of cells with 100-400 mu m. The mechanical parameters were found to depend on the leather dust concentration. Moreover, the stiffness rises with the increase of leather shavings; consequently, the compression force for expanded rubber was 0.126 MPa as well as the composite with higher concentration of leather was 7.55 MPa. (c) 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41636.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocomposites were prepared from mixture of different concentrations of ferroelectric nanoparticles in an elastomeric matrix based on the vulcanized natural rubber. The morphological characterization of nanocomposites was carried out using Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Atomic force microscopy (AFM). The nanocrystalline ferroelectric oxide is potassium strontium niobate (KSN) with stoichiometry KSr2Nb5O15, and was synthesized by the chemical route using a modified polyol method, obtaining particle size and microstrain equal to 20 nm and 0.32, respectively. These ferroelectric nanoparticles were added into the natural rubber in concentrations equal to 1, 3, 5, 10, 20 and 50 phr (parts per hundred of rubber) forming ferroelectric nanocomposites (NR/KSN). Using morphological characterization, we identified the maximum value of surface roughness at low concentrations, in particular, sample with 3 phr of nanoparticles and factors such as encapsulation and uniformity in the distribution of nanoparticles into the natural rubber matrix are investigated and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural rubber latex (NRL) is a flexible biomembrane that possesses angiogenic properties and has recently been used for guided bone regeneration, enhancing healing without fibrous tissue, allergies or rejection. Calcium phosphate (Ca/P) ceramics have chemical, biological, and mechanical properties similar to mineral phase of bone, and ability to bond to the host tissue, although it can disperse from where it is applied. Therefore, to create a composite that could enhance the properties of both materials, NRL biomembranes were coated with Ca/P. NRL biomembranes were soaked in 1.5 times concentrated SBF solution for seven days, avoiding the use of high temperatures. SEM showed that Ca/P has been coated in NRL biomembrane, XRD showed low crystallinity and FTIR showed that is the carbonated type B. Furthermore, hemolysis of erythrocytes, quantified spectrophotometrically using materials (Ca/P, NRL, and NRL + Ca/P) showed no hemolytic effects up to 0.125 mg/mL (compounds and mixtures), indicating no detectable disturbance of the red blood cell membranes. The results show that the biomimetic is an appropriate method to coat NRL with Ca/P without using high temperatures, aiming a new biomembrane to improve guided bone regeneration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)