Morphological characterization by SEM, TEM and AFM of nanoparticles and functional nanocomposites based on natural rubber filled with oxide nanopowders


Autoria(s): Bellucci, Felipe Silva; Salmazo, Leandra Oliveira; Budemberg, Eduardo Roque; Guerrero, Ariel Rodrigo; Aroca, Ricardo Flavio; Nobre, Marcos Augusto de Lima; Job, Aldo Eloizo
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

03/11/2015

03/11/2015

01/01/2014

Resumo

Nanocomposites were prepared from mixture of different concentrations of ferroelectric nanoparticles in an elastomeric matrix based on the vulcanized natural rubber. The morphological characterization of nanocomposites was carried out using Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Atomic force microscopy (AFM). The nanocrystalline ferroelectric oxide is potassium strontium niobate (KSN) with stoichiometry KSr2Nb5O15, and was synthesized by the chemical route using a modified polyol method, obtaining particle size and microstrain equal to 20 nm and 0.32, respectively. These ferroelectric nanoparticles were added into the natural rubber in concentrations equal to 1, 3, 5, 10, 20 and 50 phr (parts per hundred of rubber) forming ferroelectric nanocomposites (NR/KSN). Using morphological characterization, we identified the maximum value of surface roughness at low concentrations, in particular, sample with 3 phr of nanoparticles and factors such as encapsulation and uniformity in the distribution of nanoparticles into the natural rubber matrix are investigated and discussed.

Formato

426-431

Identificador

http://www.scientific.net/MSF.798-799.426

Brazilian Ceramic Conference 57. Stafa-zurich: Trans Tech Publications Ltd, v. 798-799, p. 426-431, 2014.

0255-5476

http://hdl.handle.net/11449/130144

http://dx.doi.org/10.4028/www.scientific.net/MSF.798-799.426

WOS:000347955400071

Idioma(s)

eng

Publicador

Trans Tech Publications Ltd

Relação

Brazilian Ceramic Conference 57

Direitos

closedAccess

Palavras-Chave #Oxide nanopowders #Natural rubber #Ferroelectric nanocomposites #Morphological characterization
Tipo

info:eu-repo/semantics/conferencePaper