79 resultados para Dispersion Coefficients
Resumo:
Cooper pairing is studied in three dimensions to determine its binding energy for all coupling using a general separable interfermion interaction. Also considered are Cooper pairs (CPs) with nonzero center-of-mass momentum (CMM). A coupling-independent linear term in the CMM dominates the pair excitation energy in weak coupling and/or high fermion density, while the more familiar quadratic term prevails only in the extreme low-density (i.e., vacuum) limit for any nonzero coupling. The linear-to-quadratic crossover of the CP dispersion relation is analyzed numerically, and is expected to play a central role in a model of superconductivity (and superfluidity) simultaneously accommodating a Bardeen-Cooper-Schrieffer condensate as well as a Bose-Einstein condensate of CP bosons. (C) 2001 Elsevier B.V. B,V. All rights reserved.
Resumo:
The Cooper pair binding energy vs. center-of-mass-momentum dispersion relation for Bose-Einstein condensation studies of superconductivity is found in two dimensions for a renormalized attractive delta interaction. It crosses over smoothly from a linear to a quadratic form as coupling varies from weak to strong.
Resumo:
In this paper, a load transportation system in platforms or suspended by cables is considered. It is a monorail device and is modelled as an inverted pendulum built on a car driven by a DC motor. The governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the DC motor and the dynamical system, that is, we have a so-called non-ideal periodic problem. The problem is analysed and we also developed an optimal linear control design to stabilize the problem.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, a loads transportation system in platforms or suspended by cables is considered. It is a monorail device and is modeled as an inverted pendulum built on a car driven by a dc motor the governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the dc motor and the dynamical system, that is, we have a so called nonideal periodic problem. The problem is analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, we also analyze the problem quantitatively using the Floquet multipliers technique. Finally, we devise a control for the studied nonideal problem. The method that was used for analysis and control of this nonideal periodic system is based on the Chebyshev polynomial exponsion, the Picard iterative method, and the Lyapunov-Floquet transformation (L-F transformation). We call it Sinha's theory.
Resumo:
The dispersion patterns of the larval planidia of Ormia depleta was studied in circular arenas. After placing 25 larvae in the center of the arena, their angle of distribution and distance travelled was recorded 15 min later. No innate directional orientations were evidenced, nor was evidence found for either positive or negative orientation to point sound and light sources. In all cases, dispersion was bimodal, with most dispersing only 1 cm, and a much smaller peak found at 10 cm. The bimodality of dispersal distances may be a response to the sexual behavior of its host, mole crickets of the genus Scapteriscus.
Resumo:
Antimony glasses based on the composition Sb2O3-SbPO4 were prepared and characterized. The samples present high refractive index, good transmission from 380 to 2000 nm, and high thermal stability. The nonlinear refractive index, n(2), of the samples was studied using the optical Kerr shutter technique at 800 nm. The third-order correlation signals between pump and probe pulses indicate ultrafast response (<100 fs) for all compositions. Enhancement of n(2) was observed by adding lead oxide to the Sb2O3-SbPO4 composition. Large values of n(2)approximate to10(-14) cm(2)/W and negligible two-photon absorption coefficients (smaller than 0.01 cm/GW) were determined for all samples. The glass compositions studied present appropriate figure-of-merit for all-optical switching applications. (C) 2005 American Institute of Physics.
Resumo:
The apparent diffusion coefficients for sucrose, NaCl and water during osmotic dehydration of tomatoes in ternary solutions were determined. Long time experiments (up to 60 h) were carried out in order to determine equilibrium concentrations inside tomatoes, whereas short time experiments (up to 4 h) were performed to provide detailed information on kinetics of water loss and solids gain at the beginning of osmotic treatment. The mass transfer rates for water and solutes showed to be dependent of NaCl and sucrose concentrations in osmotic solution and simple regression models as functions of solutes concentration were determined for diffusion coefficients. Salt and sucrose diffusivities showed to be interdependent, with increasing NaCl concentration causing the enhancement of water loss, at the same time that higher sucrose contents hindered the excessive salt penetration. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Some methods have been developed to calculate the su(q)(2) Clebsch-Gordan coefficients (CGC). Here we develop a method based on the calculation of Clebsch-Gordan generating functions through the use of 'quantum algebraic' coherent states. Calculating the su(q)(2) CGC by means of this generating function is an easy and straightforward task.
Resumo:
In this work, the problem in the loads transport (in platforms or suspended by cables) it is considered. The system in subject is composed for mono-rail system and was modeled through the system: inverted pendulum, car and motor and the movement equations were obtained through the Lagrange equations. In the model, was considered the interaction among of the motor and system dynamics for several potencies motor, that is, the case studied is denominated a non-ideal periodic problem. The non-ideal periodic problem dynamics was analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, one was made it analyzes quantitative of the problem through the analysis of the Floquet multipliers. Finally, the non-ideal problem was controlled. The method that was used for analysis and control of non-ideal periodic systems is based on the Chebyshev polynomial expansion, in the Picard iterative method and in the Lyapunov-Floquet transformation (L-F trans formation). This method was presented recently in [3-9].
Resumo:
Variance dispersion graphs have become a popular tool in aiding the choice of a response surface design. Often differences in response from some particular point, such as the expected position of the optimum or standard operating conditions, are more important than the response itself. We describe two examples from food technology. In the first, an experiment was conducted to find the levels of three factors which optimized the yield of valuable products enzymatically synthesized from sugars and to discover how the yield changed as the levels of the factors were changed from the optimum. In the second example, an experiment was conducted on a mixing process for pastry dough to discover how three factors affected a number of properties of the pastry, with a view to using these factors to control the process. We introduce the difference variance dispersion graph (DVDG) to help in the choice of a design in these circumstances. The DVDG for blocked designs is developed and the examples are used to show how the DVDG can be used in practice. In both examples a design was chosen by using the DVDG, as well as other properties, and the experiments were conducted and produced results that were useful to the experimenters. In both cases the conclusions were drawn partly by comparing responses at different points on the response surface.
Resumo:
Zones of mixing between shallow groundwaters of different composition were unravelled by two-way regionalized classification, a technique based on correspondence analysis (CA), cluster analysis (ClA) and discriminant analysis (DA), aided by gridding, map-overlay and contouring tools. The shallow groundwaters are from a granitoid plutonite in the Funda o region (central Portugal). Correspondence analysis detected three natural clusters in the working dataset: 1, weathering; 2, domestic effluents; 3, fertilizers. Cluster analysis set an alternative distribution of the samples by the three clusters. Group memberships obtained by correspondence analysis and by cluster analysis were optimized by discriminant analysis, gridded memberships as follows: codes 1, 2 or 3 were used when classification by correspondence analysis and cluster analysis produced the same results; code 0 when the grid node was first assigned to cluster 1 and then to cluster 2 or vice versa (mixing between weathering and effluents); code 4 in the other cases (mixing between agriculture and the other influences). Code-3 areas were systematically surrounded by code-4 areas, an observation attributed to hydrodynamic dispersion. Accordingly, the extent of code-4 areas in two orthogonal directions was assumed proportional to the longitudinal and transverse dispersivities of local soils. The results (0.7-16.8 and 0.4-4.3 m, respectively) are acceptable at the macroscopic scale. The ratios between longitudinal and transverse dispersivities (1.2-11.1) are also in agreement with results obtained by other studies.
Resumo:
Several methods have been proposed for calculations of the eccentricity function for a high value of the eccentricity, however they cannot be used when the high degree and order coefficients of gravity fields are taken into account. The method proposed by Wnuk(1) is numerically stable in this case, but when is used. a large number of terms occurs in formulas for geopotential perturbations. In this paper we propose an application of expansions of some functions of the eccentric anomaly E as well as Hansen coefficients in power series of (e - e*), where e* is a fixed value of the eccentricity derived by da Silva Fernandes(2,3,4). These series are convergent for all e < 1.
Resumo:
The spatial distribution of water and sugars in half-fresh apples dehydrated in sucrose solutions (30% and 50% w/w, 27 degrees C) for 2, 4 and 8 h, was determined. Each half was sliced as from the exposed surface. The density, water and sugar contents were determined for each piece. A mathematical model was fitted to the experimental data of the water and sucrose contents considering the overall flux and tissue shrinkage. A numerical method of finite differences permitted the calculation of the effective diffusion coefficients as a function of concentration, using material coordinates and integrating the two differential equations (for water and sucrose) simultaneously. The coefficients obtained were one or even two orders of magnitude lower than those for pure solutions and presented unusual concentration dependence. The behaviour of the apple tissue was also studied using light microscopy techniques to obtain images of the osmotically treated pieces (20%, 30% and 50% w/w sucrose solutions for 2, 4 and 8 h). (c) 2006 Elsevier Ltd. All rights reserved.