137 resultados para Direct Strength Method and Experiments
Resumo:
PURPOSE:To investigate the effects of alloxan diabetes on the abdominal wall healing of rats undergoing laparotomy.METHODS:Ninety-six male Wistar rats weighing between 200 and 300 grams, divided into two groups: non-diabetic group (G1) and another with untreated diabetes (G2). Three months after diabetes induction, the animals underwent a 5cm-long- laparotomy and 5.0 nylon monofilament suture. After the surgery, 12 animals from each group were euthanized on days 4, 14, 21 and 30 corresponding to the moments M1, M2, M3 and M4. In each moment a fragment of the abdominal wall containing the scar was removed for tensile strength measurement, histological and morphometric study. Clinical and biochemical parameters were also analyzed.RESULTS:G2 animals showed parameters compatible with severe diabetes and decreased plasma levels of insulin. The tensile strength in G2 was significantly smaller in M2 and M4, with a tendency to fall in the other two. Through light microscope, diabetic animals showed more difficulty to increase collagen density and contraction. G2 animals showed high cellularity of fibroblasts in later healing moments, with collagen thinning in M2 and M4.CONCLUSION:The abdominal wound healing in untreated diabetic animals was altered and led to a higher incidence of dehiscence and infections.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aim: This case report describe a resin layering restorative technique based on biomimetic concept to improve esthetics in a patient with dental defects that affected both enamel and dentin in anterior teeth. Background: Severe structural defect in anterior teeth compromises esthetics and it is a high challenge to become the defect imperceptible after the restoration. Case description: A clinical sequence of applying different composite resin layers allowed the reproduction of the interaction between hard dental tissues and the restorative material. Conclusion: This technique achieved a satisfactory final esthetic outcome, preserving sound teeth structure and at same time, improved the quality of life of the young patient. Clinical significance: The utilization of the biomimetic concept to increase a disharmonic smile with dental defects is based in a conservative approach, which reached a satisfactory and esthetic outcome.
Resumo:
We examine, from both the experimental and theoretical point of view, the behavior of the maximum splitting ΔE, of the 7F1 manifold of the Eu3+ ion as a function of the so-called crystal field strength parameter, Nv, in a series of oxides. In connection with the original theory that describes the relation between ΔE and Nv, a more consistent procedure to describe this relation is presented for the cases of small total angular momentum J. Good agreement is found between theory and experiment. © 1995.
Resumo:
Purpose: This study evaluated the effect of surface conditioning methods and thermocycling on the bond strength between a resin composite and an indirect composite system in order to test the repair bond strength. Materials and Methods: Eighteen blocks (5 x 5 x 4 mm) of indirect resin composite (Sinfony) were fabricated according to the manufacturer's instructions. The specimens were randomly assigned to one of the following two treatment conditions (9 blocks per treatment): (1) 10% hydrofluoric acid (HF) for 90 s (Dentsply) + silanization, (2) silica coating with 30-Ìm SiOx particles (CoJet) + silanization. After surface conditioning, the bonding agent was applied (Adper Single Bond) and light polymerized. The composite resin (W3D Master) was condensed and polymerized incrementally to form a block. Following storage in distilled water at 37°C for 24 h, the indirect composite/resin blocks were sectioned in two axes (x and y) with a diamond disk under coolant irrigation to obtain nontrimmed specimens (sticks) with approximately 0.6 mm2 of bonding area. Twelve specimens were obtained per block (N = 216, n = 108 sticks). The specimens from each repaired block were again randomly divided into 2 groups and tested either after storage in water for 24 h or thermocycling (6000 cycles, 5°C to 55°C). The microtensile bond strength test was performed in a universal testing machine (crosshead speed: 1 mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using two-way ANOVA (α = 0.05). Results: Both surface conditioning (p = 0.0001) and storage conditions (p = 0.0001) had a significant effect on the results. After 24 h water storage, silica coating and silanization (method 2) showed significantly higher bond strength results (46.4 ± 13.8 MPa) than that of hydrofluoric acid etching and silanization (method 1) (35.8 ± 9.7 MPa) (p < 0.001). After thermocycling, no significant difference was found between the mean bond strengths obtained with method 1 (34.1 ± 8.9 MPa) and method 2 (31.9 ± 7.9 MPa) (p > 0.05). Conclusion: Although after 24 h of testing, silica coating and silanization performed significantly better in resin-resin repair bond strength, both HF acid gel and silica coating followed by silanization revealed comparable bond strength results after thermocycling for 6000 times.
Resumo:
In most cases, the cost of a control system increases based on its complexity. Proportional (P) controller is the simplest and most intuitive structure for the implementation of linear control systems. The difficulty to find the stability range of feedback systems with P controllers, using the Routh-Hurwitz criterion, increases with the order of the plant. For high order plants, the stability range cannot be easily obtained from the investigation of the coefficient signs in the first column of the Routh's array. A direct method for the determination of the stability range is presented. The method is easy to understand, to compute, and to offer the students a better comprehension on this subject. A program in MATLAB language, based on the proposed method, design examples, and class assessments, is provided in order to help the pedagogical issues. The method and the program enable the user to specify a decay rate and also extend to proportional-integral (PI), proportional-derivative (PD), and proportional-integral-derivative (PID) controllers.
Resumo:
The effect of application methods and dentin hydration on the bond strength of three self-etching adhesives (SEA) were evaluated; 195 extracted bovine incisors were used. The buccal surface was ground in order to expose the dentin, which remained 2-mm minimum thickness, measured by a thickness meter through an opening on the lingual surface. Adper Single Bond 2 (TM) was used for the control group. The SEA were applied following two modes of application: passive or active and two hydration states of the dentin surface-dry and wet. After light-curing, composite buildups were made using Grandio (TM) composite. The specimens were sectioned and tested with a microtensile bond strength test. The application method and the hydration state resulted in statistical differences (p = 0.000) making the values of active application for mu TBS to dentin higher than passive application. The wet surfaces showed higher mu TBS to dentin ratios than dry surfaces. There were no statistical differences in mu TBS among the SEA tested but there were differences regarding to control group.
Resumo:
Purpose: To evaluate the effect of surface hydration state and application method on the microtensile bond strength of one-step self-etching adhesives systems to cut enamel.Materials and Methods: One hundred ninety-five bovine teeth were used. The enamel on the buccal side was flattened with 600-grit SiC paper. For the control group, 15 teeth received Adper Single Bond 2, applied according to manufacturer's recommendations. The other specimens were divided into three groups according to the adhesive system used: Futura Bond M (FM; Voco), Clearfil S-3 Bond (CS; Kuraray), and Optibond All in One (OA; Kerr). For each group, two hydration states were tested: D: blown dry with air; W: the excess of water was removed with absorbent paper. Two application methods were tested: P (passive): the adhesive was simply left on the surface; A (active): the adhesive was rubbed with an applicator point. A coat of Grandio composite resin (Voco) was applied on the surface. The teeth were sectioned to obtain enamel-resin sticks (1 x 1 mm), which underwent microtensile bond testing. The data in MPa were submitted to a three-way ANOVA and Tukey's test (alpha = 5%).Results: The ANOVA showed significant differences for application method and the type of adhesive, but not for hydration state. For the application method, the results of Tukey's test were: P: 31.46 (+/-7.09)a; A: 34.04 (+/-7.19)b. For the type of adhesive, the results were: OA: 31.29 (+/-7.05)a; CS: 32.28 (+/-7.14)a; FM: 34.68 (+/-7.17)b; different lower-case letters indicate statistically significant differences.Conclusion: Active application improved the bond strength to cut enamel. The adhesive Futurabond M showed the highest bond strength to cut enamel.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: To evaluate the effect of microwave disinfection on the flexural strength and Vickers hardness of 4 autopolymerized resins (Kooliner [K], Tokuso Rebase Fast [T], Ufi Gel Hard [U], and New Truliner [N]) and 1 denture base resin (Lucitone 550 [L]). Method and Materials: For each material, 48 specimens (64 x 10 x 3.3 mm) were made and divided into 6 equal groups (n = 8). In the control group, specimens were untreated. Before testing, specimens were immersed in 200 mL of distilled water and submitted to disinfection for 1 of the following irradiation times: 1, 2, 3, 4, or 5 minutes. The irradiation procedure was performed twice. The flexural strength was determined using a testing machine MTS-810 and measurements of Vickers hardness were made on Micromet 2100. The values were submitted to ANOVA and Tukey's test (P = .05). Results: The K material showed a significant increase (P = .0010) in flexural strength following 5 minutes of disinfection compared to control specimens. The flexural strength mean values of materials T, U, and N were not significantly affected (P > .05) by disinfection. Compared to the control group, the K material showed a significant increase in hardness (P < .001) following disinfection for 3, 4, and 5 minutes. For material U, disinfection for 4 and 5 minutes produced specimens with significantly increased hardness values (P < .001) compared to the control group. For material N, disinfection for 5 minutes resulted in significantly higher hardness values (P < .001) than the control group. Conclusion: Regardless of the irradiation time, the flexural strength and hardness of the materials evaluated were not detrimentally affected by microwave disinfection. (Quintessence Int 2008;39:833-840)
Resumo:
Direct expressions for the design of a lead-lag continuous compensator using the root locus method and the procedure described in the 1970 and 1990 books by Ogata are presented. These results are useful in the Ogata design method because they avoid the geometrical determination of poles and zeros, making it easier to create a computer-based design.