364 resultados para Diffusive gradients in thin films
Resumo:
Lead calcium titanate (Pb1-xCaxTiO3 or PCT) thin films have been thermally treated under different oxygen pressures, 10, 40 and 80 bar, by using the so-called chemical solution deposition method. The structural, morphological, dielectric and ferroelectric properties were characterized by x-ray diffraction, FT-infrared and Raman spectroscopy, atomic force microscopy and polarization-electric-field hysteresis loop measurements. By annealing at a controlled pressure of around 10 and 40 bar, well-crystallized PCT thin films were successfully prepared. For the sample submitted to 80 bar, the x-ray diffraction, Fourier transformed-infrared and Raman data indicated deviation from the tetragonal symmetry. The most interesting feature in the Raman spectra is the occurrence of intense vibrational modes at frequencies of around 747 and 820 cm(-1), whose presence depends strongly on the amount of the pyrochlore phase. In addition, the Raman spectrum indicates the presence of symmetry-breaking disorder, which would be expected for an amorphous (disorder) and mixed pyrochlore-perovskite phase. During the high-pressure annealing process, the crystallinity and the grain size of the annealed film decreased. This process effectively suppressed both the dielectric and ferroelectric behaviour. Ferroelectric hysteresis loop measurements performed on these PCT films exhibited a clear decrease in the remanent polarization with increasing oxygen pressure.
Resumo:
In this work, it was used a plasma system composed of a cylindrical stainless steel reactor, a radio-frequency (13.56MHz) power source fixed at either 25 W or 70 W, a power source with a negative bias of 10kV and a 100Hz pulse. The system worked at an operational pressure of 80mTorr which consisted of varying concentrations of the monomer HMDSN and gaseous nitrogen in ratios: HMDSN (mTorr)/nitrogen (mTorr) from 70/10 to 20/60 in terms of operational pressure. The structural characterization of the films was done by FTIR spectroscopy. Absorptions were observed between 3500 cm(-1) to 3200 cm(-1), 3000 cm(-1) to 2900 cm(-1), 2500 cm(-1) to 2000 cm(-1), 1500 cm(-1) to 700 cm(-1), corresponding, respectively, to OH radicals, C-H stretching bonds in CH2 and CH3 molecules, C-N bonds, and finally, strain C-H bonds, Si-CH3 and Si-N groups, for both the 70 W and the 25 W. The contact angle for water was approximately 100 degrees and the surface energy is near 25mJ/m(2) which represents a hydrophobic surface, measured by goniometric method. The aging of the film was also analyzed by measuring the contact angle over a period of time. The stabilization was observed after 4 weeks. The refractive index of these materials presents values from 1.73 to 1.65 measured by ultraviolet-visible technique.
Resumo:
SrBi4Ti4O15 (SBTi) thin films were obtained by the polymeric precursor method and crystallized in a domestic microwave oven. For comparison, films were also crystallized in a conventional furnace at 700 degrees C for 2 h. Structural and morphological characterization of the SBTi thin films was investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. Using platinum coated silicon substrates configuration, ferroelectric properties of the films were determined with remanent\polarization P-r and a coercive field E-c of 5.1 mu C/cm(2) and 135 kV/cm for the film thermally treated in the microwave oven and 5.4 mu C/cm(2) and 85 kV/cm for the film thermally treated in conventional furnace, respectively. The films thermally treated in the conventional furnace exhibited excellent fatigue-free characteristics up to 10(10) switching cycles indicating that SBTi thin films can be a promise material for use in non-volatile memories. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The AC electric field and temperature dependences of the dielectric permittivity for strontium barium niobate (Sr(0.75)Ba(0.25)Nb(2)O(6)) relaxor ferroelectric thin films have been investigated. The results indicate the existence of a true mesoscopic structure evidenced by the nonlinear dielectric response of these films, which is similar to those observed for bulk relaxor ferroelectrics. A tendency for a temperature dependent crossover from a linear to a quadratic behaviour of the dielectric nonlinearity was observed, indicating an evolution from paraelectric to glass-like behaviour on cooling the samples towards the freezing temperature transition.
Resumo:
The ac and dc driving fields dependence of the dielectric permittivity for the strontium barium niobate relaxor ferroelectric thin films has been investigated. The nonlinear dielectric properties were obtained by using the measurements of the dielectric permittivity of the material as a function of the ac and dc "bias" electric field amplitude in wide frequency (100 Hz-10 MHz) and temperature (50-450 K) intervals. The results hint the existence of a true mesoscopic dielectric relaxor response in the ferroelectric thin film, which is very similar to those observed in bulk relaxor ferroelectrics. An anomalous behavior of the NL dielectric response was observed when submitted to moderate dc electric fields levels,,indicating a crossover from paraelectric to a glasslike behavior on cooling the sample toward the freezing transition. The obtained results were analyzed within the framework of the models proposed in the current literature.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The nature of defects in polycrystalline Bi4-xLaxTi3O12 (BLT) thin films with x=0.00, 0.25, 0.50, and 0.75 was evaluated by x-ray photoemission spectroscopy measurements. The influence of oxygen vacancies and substitution of Bi for La atoms were discussed. In the BLT thin films, it was found that the oxygen ions at the metal-oxygen octahedral were much more stable than those at the [Bi2O2] layers. on the other hand, for Bi4Ti3O12 (BIT) thin film, oxygen vacancies could be induced both at the titanium-oxygen octahedral and at the [Bi2O2] layers. The oxygen-vacancy defect pairs determined in BIT and Bi3.75La0.25Ti3O12 (BLT025) can pin the polarization of surrounding lattices leading to fatigue of capacitors. Meanwhile, the concentration of similar defect pairs is relatively low in heavily doped BIT films and then good fatigue resistance is observed.
Resumo:
The nature of the intense visible room temperature photoluminescence of BaZr0.5Ti0.5O3 non-crystalline thin films is discussed in the light of experimental results and theoretical calculations. The photoluminescence measurements reveal that the emission intensity changes with the degree of disorder in the BaZr0.5Ti0.5O3 lattice. First principles quantum mechanical techniques, based on density functional theory at B3LYP level, have been employed to study the electronic structure of a crystalline model and of structurally disordered models in order to detect the influence of disorder on the electronic structure. An analysis of the electronic charge distribution reveals local polarization in the disordered structures. The relevance of the present theoretical and experimental results on the photoluminescence behavior of BZT is discussed. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Photoluminescence at room temperature in Ba(Zr0.25Ti0.75)O-3 thin films was explained by the degree of structural order-disorder. Ultraviolet-visible absorption spectroscopy, photoluminescence, and first principles quantum mechanical measurements were performed. The film annealed at 400 degrees C for 4 h presents intense visible photoluminescence behavior at room temperature. The increase of temperature and annealing time creates [ZrO6]-[TiO6] clusters in the lattice leading to the trapping of electrons and holes. Thus, [ZrO5]-[TiO6]/[ZrO6]-[TiO6] clusters were the main reason for the photoluminescence behavior.
Resumo:
Pure-and lanthanun doped Bi4Ti3O12 thin films were deposited on Pt/Ti/SiO2/Si substrate using a polymeric precursor solution. Annealing in static air and oxygen atmosphere was performed at 700 degrees C for 2 h. The obtained films were characterized by X-ray diffraction and atomic force microscopy. The dielectric constant and dissipation factor were measured in the frequency region from 1 kHz to 1 MHz. Electrical characterization of the films pointed to ferroelectricity via hysteresis loop. Films annealed in static air possess a dielectric constant higher than films annealed in oxygen atmosphere due to differences in the grain size, crystallinity and structural defects. A regularly shaped hystereses loop is observed after annealing in static air. The obtained results suggest that the annealing in oxygen atmosphere can increase the trapped charge and the relaxation phenomenon. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
The emission of wide band photoluminescence showed a synergic effect on barium zirconate and barium titanate thin films in alternate multilayer system at room temperature by 488 nm exiting wavelength. The thin films obtained by spin-coating were annealed at 350, 450, and 550 degrees C for 2 h. The X-ray patterns revealed the complete separation among the BaTiO3 and BaZrO3 phases in the adjacent films. Visible and intense photoluminescence was governed by BaZrO3 thin films in the multilayer system. Quantum mechanics calculations were used in order to simulate ordered and disordered thin films structures. The disordered models, which were built by using the displacement of formers and modifier networks, showed a different symmetry in each system, which is in accordance with experimental photoluminescence emission, thus allowing to establish a correlation among the structural and optical properties of these multilayered systems.