39 resultados para haptic motion control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article uses an anchor metaphor to explain the dynamic interplay between the human body's active uses of nonrigid tools to mediate information about its adjacent environment to enhance postural control. The author used an anchor system (ropes attached to varying weights resting on the floor) to test blindfolded adults who performed a restricted-balance task (30 s one-foot standing). Participants were tested while holding the anchors under a variety of weight conditions (125 g, 250 g, 500 g, and I kg) and again during a baseline condition (no anchors). When compared with the baseline condition, there was a significant reduction in the amount of body sway across the anchor conditions. The author found that mechanical support provided by the anchor system was secondary to its haptic exploratory function and that an individual can use the anchoring strategy with a dual purpose: for resting and for reorientation after intrinsic disruptions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A microactuator made from poly(vinylidene fluoride) (PVDF), a piezoelectric polymer, was fabricated to control the gas flow rate through a glass micronozzle. The actuator was formed by gluing together two PVDF sheets with opposite polarization directions. The sheets were covered with thin conducting films on one side, that were then used as electrodes to apply an electric field to move the valve. The actuator has a rectangular shape, 3 mm x 6 mm. The device was incorporated with a micronozzle fabricated by a powder blasting technique. Upon applying a DC voltage across the actuator electrodes, one sheet expands while the other contracts, generating an opening motion. A voltage of +300 V DC was used to open the device by moving the actuator 30 mu m, and a voltage of -200 V DC was used to close the device by moving the actuator 20 mu m lower than the relaxed position. Flow measurements were performed in a low-pressure vacuum system, maintaining the microvalve inlet pressure constant at 266 Pa. Tests carried out with the actuator in the open position and with a pressure ratio (inlet pressure divided by outlet pressure) of 0.5, indicated a flow rate of 0.36 sccm. In the closed position, and with a pressure ratio of 0.2, a flow rate of 0.32 sccm was measured.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a load transport system in platforms is considered. It is a transport device and is modelled as an inverted pendulum built on a car driven by a DC motor. The motion equations were obtained by Lagrange's equations. The mathematical model considers the interaction between the DC motor and the dynamic system. The dynamic system was analysed and a Swarm Control Design was developed to stabilize the model of this load transport system. ©2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, a simplified dynamical model of a magnetically levitated body is considered. The origin of an inertial Cartesian reference frame is set at the pivot point of the pendulum on the levitated body in its static equilibrium state (ie, the gap between the magnet on the base and the magnet on the body, in this state). The governing equations of motion has been derived and the characteristic feature of the strategy is the exploitation of the nonlinear effect of the inertial force associated, with the motion of a pendulum-type vibration absorber driven, by an appropriate control torque [4]. In the present paper, we analyzed the nonlinear dynamics of problem, discussed the energy transfer between the main system and the pendulum in time, and developed State Dependent Riccati Equation (SDRE) control design to reducing the unstable oscillatory movement of the magnetically levitated body to a stable fixed point. The simulations results showed the effectiveness of the (SDRE) control design. Copyright © 2011 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In last decades, control of nonlinear dynamic systems became an important and interesting problem studied by many authors, what results the appearance of lots of works about this subject in the scientific literature. In this paper, an Atomic Force Microscope micro cantilever operating in tapping mode was modeled, and its behavior was studied using bifurcation diagrams, phase portraits, time history, Poincare maps and Lyapunov exponents. Chaos was detected in an interval of time; those phenomena undermine the achievement of accurate images by the sample surface. In the mathematical model, periodic and chaotic motion was obtained by changing parameters. To control the chaotic behavior of the system were implemented two control techniques. The SDRE control (State Dependent Riccati Equation) and Time-delayed feedback control. Simulation results show the feasibility of the bothmethods, for chaos control of an AFM system. Copyright © 2011 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a three-phase integrated inverter suitable for stand-alone and grid-connected applications. Furthermore, the utilization of the special features of the tri-state coupled with the new space vector modulation allows the converter to present an attractive degree of freedom for the designing of the controllers. Additionally, the control is derived through dq0 transformation, all the system is described and interesting simulation results are available to confirm the proposal. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Researches on control for power electronics have looked for original solutions in order to advance renewable resources feasibility, specially the photovoltaic (PV). In this context, for PV renewable energy source the usage of compact, high efficiency, low cost and reliable converters are very attractive. In this context, two improved simplified converters, namely Tri-state Boost and Tri-state Buck-Boost integrated single-phase inverters, are achieved with the presented Tri-state modulation and control schemes, which guarantees the input to output power decoupling control. This feature enhances the field of single-phase PV inverters once the energy storage is mainly inductive. The main features of the proposal are confirmed with some simulations and experimental results. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recovery of sperm from the epididymal cauda may be the last chance to obtain genetic material when sudden death or serious injuries occur in valuable stallions. However, the lack of technical knowledge regarding the storage and transportation of the epididymis often prevents the preservation of the sperm. Therefore, the aim of this study was to compare sperm parameters of sperm obtained immediately after orchiectomy with sperm recovered from epididymal cauda at different times after storage at 5°C and at room temperature (RT). For that, 48 stallions of different breeds were used. In group 1 (control group), eight stallions were used, and the harvest of the epididymal sperm was performed immediately after orchiectomy. In group 2, 40 stallions were used, which were divided into five groups according to the storage time of the epididymis after orchiectomy (6, 12, 18, 24, or 30 hours), making a total of eight stallions per group. One epididymis of each stallion was stored at 5°C, and the contralateral epididymis was stored at RT, both for the same period. The sperm parameters of total motility, progressive motility, progressive linear velocity, curvilinear velocity, percentage of rapid sperm, and plasma membrane integrity were evaluated in all the groups after sperm recovery, resuspension in a sperm freezing diluent, and thawing. In conclusion, the storage of the testis-epididymis complex at 5°C provided better preservation of epididymal sperm than the storage at RT, and regardless of the temperature, the progressive motility is the sperm parameter that is most sensitive to storage time. © 2013 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STUDY DESIGN. Observational cohort study. OBJECTIVE. To investigate spinal coordination during preferred and fast speed walking in pain-free subjects with and without a history of recurrent low back pain (LBP). SUMMARY OF BACKGROUND DATA. Dynamic motion of the spine during walking is compromised in the presence of back pain (LBP), but its analysis often presents some challenges. The coexistence of significant symptoms may change gait because of pain or adaptation of the musculoskeletal structures or both. A history of LBP without the overlay of a current symptomatic episode allows a better model in which to explore the impact on spinal coordination during walking. METHODS. Spinal and lower limb segmental motions were tracked using electromagnetic sensors. Analyses were conducted to explore the synchrony and spatial coordination of the segments and to compare the control and subjects with LBP. RESULTS. We found no apparent differences between the groups for either overall amplitude of motion or most indicators of coordination in the lumbar region; however, there were significant postural differences in the mid-stance phase and other indicators of less phase locking in controls compared with subjects with LBP. The lower thoracic spinal segment was more affected by the history of back pain than the lumbar segment. CONCLUSION. Although small, there were indicators that alterations in spinal movement and coordination in subjects with recurrent LBP were due to adaptive changes rather than the presence of pain. © 2013, Lippincott Williams & Wilkins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of the optimal linear feedback control and of the state-dependent Riccati equation control techniques applied to control and to suppress the chaotic motion in the atomic force microscope are analyzed. In addition, the sensitivity of each control technique regarding to parametric uncertainties are considered. Simulation results show the advantages and disadvantages of each technique. © 2013 Brazilian Society for Automatics - SBA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Haptic information, provided by a non-rigid tool (i.e., an anchor system), can reduce body sway in individuals who perform a standing postural task. However, it was not known whether or not continuous use of the anchor system would improve postural control after its removal. Additionally, it was unclear as to whether or not frequency of use of the anchor system is related to improved control in older adults. The present study evaluated the effect of the prolonged use of the anchor system on postural control in healthy older individuals, at different frequencies of use, while they performed a postural control task (semi-tandem position). Participants were divided into three groups according to the frequency of the anchor system's use (0%, 50%, and 100%). Pre-practice phase (without anchor) was followed by a practice phase (they used the anchor system at the predefined frequency), and a post-practice phase (immediate and late-without anchor). All three groups showed a persistent effect 15. min after the end of the practice phase (immediate post-practice phase). However, only the 50% group showed a persistent effect in the late post-practice phase (24. h after finishing the practice phase). Older adults can improve their postural control by practicing the standing postural task, and use of the anchor system limited to half of their practice time can provide additional improvement in their postural control. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tapping mode is one of the mostly employed techniques in atomic force microscopy due to its accurate imaging quality for a wide variety of surfaces. However, chaotic microcantilever motion impairs the obtention of accurate images from the sample surfaces. In order to investigate the problem the tapping mode atomic force microscope is modeled and chaotic motion is identified for a wide range of the parameter's values. Additionally, attempting to prevent the chaotic motion, two control techniques are implemented: the optimal linear feedback control and the time-delayed feedback control. The simulation results show the feasibility of the techniques for chaos control in the atomic force microscopy. © 2012 IMechE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the behavior of a structure vulnerable to excessive vibrations caused by an non-ideal power source. To perform this study, the mathematical model is proposed, derive the equations of motion for a simple plane frame excited by an unbalanced rotating machine with limited power (non-ideal motor). The non-linear and non-ideal dynamics in system is demonstrated with a chaotic behavior. We use a State-Dependent Riccati Equation Control technique for regulate the chaotic behavior, in order to obtain a periodic orbit small and to decrease its amplitude. The simulation results show the identification by State-Dependent Riccati Equation Control is very effective. © 2013 Academic Publications, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the problem of applying an impulsive control in a spacecraft that is performing a Swing-By maneuver. The objective is to study the changes in velocity, energy and angular momentum for this maneuver as a function of the three usual parameters of the standard Swing-By plus the three parameters (the magnitude of the impulse, the point of its application and the angle between the impulse and the velocity of the spacecraft) that specify the impulse applied. The dynamics used is the restricted three body problem under the regularization of Lemaitre, made to increase the accuracy of the numerical integration near the primaries. The present research develops an algorithm to calculate the variation of energy and angular momentum in a maneuver where the application of the impulsive control occurs before or after the passage of the spacecraft by the periapsis, but within the sphere of influence of the secondary body and in a non-tangential direction. Using this approach, it is possible to find the best position and direction to apply the impulse to maximize the energy change of the total maneuver. The results showed that the application of the impulse at the periapsis and in the direction of motion of the spacecraft is usually not the optimal solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)