100 resultados para Theorem of Thales
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Different mathematical methods have been applied to obtain the analytic result for the massless triangle Feynman diagram yielding a sum of four linearly independent (LI) hypergeometric functions of two variables F-4. This result is not physically acceptable when it is embedded in higher loops, because all four hypergeometric functions in the triangle result have the same region of convergence and further integration means going outside those regions of convergence. We could go outside those regions by using the well-known analytic continuation formulas obeyed by the F-4, but there are at least two ways we can do this. Which is the correct one? Whichever continuation one uses, it reduces a number of F-4 from four to three. This reduction in the number of hypergeometric functions can be understood by taking into account the fundamental physical constraint imposed by the conservation of momenta flowing along the three legs of the diagram. With this, the number of overall LI functions that enter the most general solution must reduce accordingly. It remains to determine which set of three LI solutions needs to be taken. To determine the exact structure and content of the analytic solution for the three-point function that can be embedded in higher loops, we use the analogy that exists between Feynman diagrams and electric circuit networks, in which the electric current flowing in the network plays the role of the momentum flowing in the lines of a Feynman diagram. This analogy is employed to define exactly which three out of the four hypergeometric functions are relevant to the analytic solution for the Feynman diagram. The analogy is built based on the equivalence between electric resistance circuit networks of types Y and Delta in which flows a conserved current. The equivalence is established via the theorem of minimum energy dissipation within circuits having these structures.
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents an extension of the Enestrom-Kakeya theorem concerning the roots of a polynomial that arises from the analysis of the stability of Brown (K, L) methods. The generalization relates to relaxing one of the inequalities on the coefficients of the polynomial. Two results concerning the zeros of polynomials will be proved, one of them providing a partial answer to a conjecture by Meneguette (1994)[6]. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper we use the Hermite-Biehler theorem to establish results for the design of fixed order controllers for a class of time delay systems. We extend results of the polynomial case to quasipolynomials using the property of interlacing in high frequencies of the class of time delay systems considered. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We study the existence of a holomorphic generalized solution u of the PDE[GRAPHICS]where f is a given holomorphic generalized function and (alpha (1),...alpha (m)) is an element of C-m\{0}.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)