62 resultados para Stiffness Prediction
Resumo:
Twenty two open-pollinated Hevea progenies from different parental clones of the Asian origin were tested at five sites in the Northwestern São Paulo State Brazil to investigate the progeny girth growth, rubber yield, bark thickness and plant height. Except for the rubber yield, the analysis of variance indicated highly significant (p<0.01) genotype x environment interaction and heterogeneity of regressions among the progenies. However, the regression stability analysis identified only a few interacting progenies which had regression coefficients significantly different from the expected value of one. The linear regressions of the progeny mean performance at each test on an environmental index (mean of all the progenies in each test) showed the general stability and adaptability of most selected Hevea progenies over the test environments. The few progenies which were responsive and high yielding on different test sites could be used to maximize the rubber cultivars productivity and to obtain the best use of the genetically improved stock under different environmental conditions.
Resumo:
OBJECTIVE: Our objective was to determine whether measurement of placenta growth factor (PLGF), inhibin A, or soluble fms-like tyrosine kinase-1 (sFlt-1) at 2 times during pregnancy would usefully predict subsequent preeclampsia ( PE) in women at high risk. STUDY DESIGN: We analyzed serum obtained at enrollment (12(0/7) to 19(6/7) weeks) and follow-up (24-28 weeks) from 704 patients with previous PE and/or chronic hypertension (CHTN) enrolled in a randomized trial for the prevention of PE. Logistic regression analysis assessed the association of log-transformed markers with subsequent PE; receiver operating characteristic analysis assessed predictive value. RESULTS: One hundred four developed preeclampsia: 27 at 37 weeks or longer and 77 at less than 37 weeks (9 at less than 27 weeks). None of the markers was associated with PE at 37 weeks or longer. Significant associations were observed between PE at less than 37 weeks and reduced PLGF levels at baseline (P =.022) and follow-up (P <.0001) and elevated inhibin A (P <.0001) and sFlt-1 (P =.0002) levels at follow-up; at 75% specificity, sensitivities ranged from 38% to 52%. Using changes in markers from baseline to follow-up, sensitivities were 52-55%. Associations were observed between baseline markers and PE less than 27 weeks (P <=.0004 for all); sensitivities were 67-89%, but positive predictive values (PPVs) were only 3.4-4.5%. CONCLUSION: Inhibin A and circulating angiogenic factors levels obtained at 12(0/7) to 19(6/7) weeks have significant associations with onset of PE at less than 27 weeks, as do levels obtained at 24-28 weeks with onset of PE at less than 37 weeks. However, because the corresponding sensitivities and/or PPVs were low, these markers might not be clinically useful to predict PE in women with previous PE and/or CHTN.
Resumo:
Background: The objective was to present a new ovarian response prediction index (ORPI), which was based on anti-Mullerian hormone (AMH) levels, antral follicle count (AFC) and age, and to verify whether it could be a reliable predictor of the ovarian stimulation response.Methods: A total of 101 patients enrolled in the ICSI programme were included. The ORPI values were calculated by multiplying the AMH level (ng/ml) by the number of antral follicles (2-9 mm), and the result was divided by the age (years) of the patient (ORPI=(AMH x AFC)/Patient age).Results: The regression analysis demonstrated significant (P<0.0001) positive correlations between the ORPI and the total number of oocytes and of MII oocytes collected. The logistic regression revealed that the ORPI values were significantly associated with the likelihood of pregnancy (odds ratio (OR): 1.86; P=0.006) and collecting greater than or equal to 4 oocytes (OR: 49.25; P<0.0001), greater than or equal to 4 MII oocytes (OR: 6.26; P<0.0001) and greater than or equal to 15 oocytes (OR: 6.10; P<0.0001). Regarding the probability of collecting greater than or equal to 4 oocytes according to the ORPI value, the ROC curve showed an area under the curve (AUC) of 0.91 and an efficacy of 88% at a cut-off of 0.2. In relation to the probability of collecting greater than or equal to 4 MII oocytes according to the ORPI value, the ROC curve had an AUC of 0.84 and an efficacy of 81% at a cut-off of 0.3. The ROC curve for the probability of collecting greater than or equal to 15 oocytes resulted in an AUC of 0.89 and an efficacy of 82% at a cut-off of 0.9. Finally, regarding the probability of pregnancy occurrence according to the ORPI value, the ROC curve showed an AUC of 0.74 and an efficacy of 62% at a cut-off of 0.3.Conclusions: The ORPI exhibited an excellent ability to predict a low ovarian response and a good ability to predict a collection of greater than or equal to 4 MII oocytes, an excessive ovarian response and the occurrence of pregnancy in infertile women. The ORPI might be used to improve the cost-benefit ratio of ovarian stimulation regimens by guiding the selection of medications and by modulating the doses and regimens according to the actual needs of the patients.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The identification of genes essential for survival is important for the understanding of the minimal requirements for cellular life and for drug design. As experimental studies with the purpose of building a catalog of essential genes for a given organism are time-consuming and laborious, a computational approach which could predict gene essentiality with high accuracy would be of great value. We present here a novel computational approach, called NTPGE (Network Topology-based Prediction of Gene Essentiality), that relies on the network topology features of a gene to estimate its essentiality. The first step of NTPGE is to construct the integrated molecular network for a given organism comprising protein physical, metabolic and transcriptional regulation interactions. The second step consists in training a decision-tree-based machine-learning algorithm on known essential and non-essential genes of the organism of interest, considering as learning attributes the network topology information for each of these genes. Finally, the decision-tree classifier generated is applied to the set of genes of this organism to estimate essentiality for each gene. We applied the NTPGE approach for discovering the essential genes in Escherichia coli and then assessed its performance. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The genome-wide identification of both morbid genes, i.e., those genes whose mutations cause hereditary human diseases, and druggable genes, i.e., genes coding for proteins whose modulation by small molecules elicits phenotypic effects, requires experimental approaches that are time-consuming and laborious. Thus, a computational approach which could accurately predict such genes on a genome-wide scale would be invaluable for accelerating the pace of discovery of causal relationships between genes and diseases as well as the determination of druggability of gene products.Results: In this paper we propose a machine learning-based computational approach to predict morbid and druggable genes on a genome-wide scale. For this purpose, we constructed a decision tree-based meta-classifier and trained it on datasets containing, for each morbid and druggable gene, network topological features, tissue expression profile and subcellular localization data as learning attributes. This meta-classifier correctly recovered 65% of known morbid genes with a precision of 66% and correctly recovered 78% of known druggable genes with a precision of 75%. It was than used to assign morbidity and druggability scores to genes not known to be morbid and druggable and we showed a good match between these scores and literature data. Finally, we generated decision trees by training the J48 algorithm on the morbidity and druggability datasets to discover cellular rules for morbidity and druggability and, among the rules, we found that the number of regulating transcription factors and plasma membrane localization are the most important factors to morbidity and druggability, respectively.Conclusions: We were able to demonstrate that network topological features along with tissue expression profile and subcellular localization can reliably predict human morbid and druggable genes on a genome-wide scale. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing morbidity and druggability.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The cross-section for the scattering of a photon by the Sun's gravitational field, treated as an external field, is computed in the framework of R + R-2 gravity. Using this result, we found that for a photon just grazing the Sun's surface the deflection is 1.75 which is exactly the same as that given by Einstein's theory. An explanation for this pseudo-paradox is provided.
Resumo:
A scale-independent approach, valid for weakly bound three-body systems, is used to analyze the existence of excited Thomas-Efimov states in molecular systems with three atoms: a helium dimer together with isotopes of lithium (Li-6 and Li-7) and sodium (Na-23). With the present study and the available data, we can clearly predict that the He-4(2)-Li-7 system supports an excited state with binding energy close to 2.31 mK. (C) 2000 American Institute of Physics. [S0021-9606(00)30442-1].
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Several Brazilian commercial gasoline physicochemical parameters, such as relative density, distillation curve (temperatures related to 10%, 50% and 90% of distilled volume, final boiling point and residue), octane numbers (motor and research octane number and anti-knock index), hydrocarbon compositions (olefins, aromatics and saturates) and anhydrous ethanol and benzene content was predicted from chromatographic profiles obtained by flame ionization detection (GC-FID) and using partial least square regression (PLS). GC-FID is a technique intensively used for fuel quality control due to its convenience, speed, accuracy and simplicity and its profiles are much easier to interpret and understand than results produced by other techniques. Another advantage is that it permits association with multivariate methods of analysis, such as PLS. The chromatogram profiles were recorded and used to deploy PLS models for each property. The standard error of prediction (SEP) has been the main parameter considered to select the "best model". Most of GC-FID-PLS results, when compared to those obtained by the Brazilian Government Petroleum, Natural Gas and Biofuels Agency - ANP Regulation 309 specification methods, were very good. In general, all PLS models developed in these work provide unbiased predictions with lows standard error of prediction and percentage average relative error (below 11.5 and 5.0, respectively). (C) 2007 Elsevier B.V. All rights reserved.