31 resultados para REUSABLE CATALYST


Relevância:

20.00% 20.00%

Publicador:

Resumo:

(formula presented) The air, water, and highly thermally stable sulfur-containing palladacycles, mainly derived from the ortho-palladation of benzylic thioethers, are exceptional catalyst precursors for the Heck reaction. The reaction can be performed with aryl iodides, bromides, and chlorides, with acrylic esters and styrene, leading to turnover numbers up to 1 850 000.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclopalladated compounds derived from the ortho-metalation of benzylic tert-butyl thioethers are excellent catalyst precursors for the Suzuki cross-coupling reaction of aryl bromides and chlorides with phenylboronic acid under mild reaction conditions. A broad range of substrates and functional groups are tolerated in this protocol, and highly catalytic activity is attained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes results of the photo-degradation of three types of soluble and emulsive cutting fluids in an aqueous medium, using TiO2 as catalyst in suspension and UV radiation. The TiO2 proved to be an effective catalyst for the degradation of the cutting fluids investigated. The degradation rate depends on pH and nature of the fluids. The best performance of catalyst was observed at pH 8.0 for all the fluids when most of 70% of the organic load was decomposed. ©2006 Sociedade Brasileira de Química.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A biomimetic sensor based on a carbon paste electrode modified with the nickel(II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine complex was developed as a reliable alternative technique for the sensitive and selective analysis of the herbicide diuron in environmental media. The sensor was evaluated using cyclic voltammetry and amperometric techniques. The best amperometric responses were obtained at 750 mV vs. Ag/AgCl (KClsat), using 0.1 mol L-1 phosphate buffer solution at pH 8.0. Under these conditions, the sensor showed a linear response for diuron concentrations between 9.9 × 10-6 and 1.5 × 10-4 mol L -1, a sensitivity of 22817 (±261) μA L mol-1, and detection and quantification limits of 6.14 × 10-6 and 2 × 10-5 mol L-1, respectively. The presence of the nickel complex in the carbon paste improved selectivity, stability, and sensitivity (which increased 700%), compared to unmodified paste. The applicability of the sensor was demonstrated using enriched environmental samples (river water and soil). © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reusable cardboard boxes can be ergonomically designed for internal transportation of dry products in industrial settings. In this study we compared the effects of handling a regular commercial box and two cardboard prototypes on upper limb postures through the evaluation of movements, myoelectrical activity, perceived grip acceptability and capacity for reuse. The ergonomic designs provided a more acceptable grip, safer wrist and elbow movements and lower wrist extensors and biceps activity. Biomechanical disadvantages were observed only for one of the prototypes when handling to high surface. The prototypes were durable and suitable for extensive reuse (more than 2000 handlings) in internal industrial transportation. Despite being slightly more expensive than regular cardboard, the prototypes showed good cost-benefit considering their high durability. Relevance to industry: Cardboard boxes can be efficiently redesigned for allowing safer upper limb movements and lower muscle workload in manual materials handling. New designs can also be extensively reused for internal industrial transportation with good cost-benefit. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reuse of industrial and agricultural wastes as supplementary cementitious materials (SCMs) in concrete and mortar productions contribute to sustainable development. In this context, fluid catalytic cracking catalyst residue (spent FCC), a byproduct from the petroleum industry and petrol refineries, have been studied as SCM in blended Portland cement in the last years. Nevertheless, another environmental friendly alternative has been conducted in order to produce alternative binders with low CO2 emissions. The use of aluminosilicate materials in the production of alkali-activated materials (AAMs) is an ongoing research topic which can present low CO2 emissions associated. Hence, this paper studies some variables that can influence the production of AAM based on spent FCC. Specifically, the influence of SiO 2/Na2O molar ratio and the H2O/spent FCC mass ratio on the mechanical strength and microstructure are assessed. Some instrumental techniques, such as SEM, XRD, pH and electrical conductivity measurements, and MIP are performed in order to assess the microstructure of formed alkali-activated binder. Alkali activated mortars with compressive strength up to 80 MPa can be formed after curing for 3 days at 65°C. The research demonstrates the potential of spent FCC to produce alkali-activated cements and the importance of SiO2/Na2O molar ratio and the H2O/spent FCC mass ratio in optimising properties and microstructure. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sluggish kinetics of ethanol oxidation on Pt-based electrodes is one of the major drawbacks to its use as a liquid fuel in direct ethanol fuel cells, and considerable efforts have been made to improve the reaction kinetics. Herein, we report an investigation on the effect of the Pt microstructure (well-dispersed versus agglomerated nanoparticles) and the catalyst support (carbon Vulcan, SnO2, and RuO2) on the rate of the electrochemical oxidation of ethanol and its major adsorbed intermediate, namely, carbon monoxide. By using several structural characterization techniques such as X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy, along with potentiodynamic and potentiostatic electrochemical experiments, we show that by altering both the Pt microstructure and the support, the rate of the electrochemical oxidation of ethanol can be improved up to a factor of 12 times compared to well-dispersed carbon-supported Pt nanoparticles. As a result of a combined effect, the interaction of Pt agglomerates with SnO2 yielded the highest current densities among all materials studied. The differences in the activity are discussed in terms of structural and electronic properties as well as by mass transport effects, providing valuable insights to the development of more active materials. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence is provided for the inner-sphere mechanism with actual metal coordination of the racemic amine in the crucial hydrogen transfer step promoted by Shvo's catalyst of the chemoenzymatic dynamic kinetic resolution (DKR) of amines. Key intermediates involved in this H-transfer step were intercepted and continuously monitored by electrospray ionization mass spectrometry (ESI-MS) and characterized by their dissociation chemistries via ESI-MS/MS. © 2013 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium titanate was synthesized by the sol-gel method and characterized using X-ray diffraction, thermogravimetry-mass spectrometry, atomic absorption spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis and nitrogen physisorption. The non-calcined material was active as a catalyst in transesterification reactions and showed high stability. An appreciable loss of activity on the fourth reuse was accompanied by the appearance of a new species of oxygen and segregated sodium, identified by X-ray photoelectron spectroscopy (XPS). The XPS spectrum showed that the basic nature of the framework oxygen was inferior to the original basicity, which explained the decline in catalytic activity. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Azide-alkyne Huisgen click chemistry provides new synthetic routes for making thermoplastic polytriazole polymers-without solvent or catalyst. This method was used to polymerize three diester dialkyne monomers with a lipid derived 18 carbon diazide to produce a series of polymers (labelled C18C18, C18C9, and C18C4 based on monomer chain lengths) free of residual solvent and catalyst. Three diester dialkyne monomers were synthesized with ester chain lengths of 4, 9, and 18 carbons from renewable sources. Significant differences in thermal and mechanical properties were observed between C18C9 and the two other polymers. C18C9 presented a lower melting temperature, higher elongation at break, and reduced Young's modulus compared to C18C4 and C18C18. This was due to the odd-even effect induced by the number of carbon atoms in the monomers which resulted in orientation of the ester linkages of C18C9 in the same direction, thereby reducing hydrogen bonding. The thermoplastic polytriazoles presented are novel polymers derived from vegetable oil with favourable mechanical and thermal properties suitable for a large range of applications where no residual solvent or catalyst can be tolerated. Their added potential biocompatibility and biodegradability make them ideal for applications in the medical and pharmaceutical industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermogravimetric analysis is one of the most common instrumental techniques used for the characterization of pastes, mortars and concretes based on both calcium hydroxide and Portland cement. Important information about pozzolanic materials can be assessed concerning calcium hydroxide consumption and the formation of new hydrated products. Nevertheless, in some cases, problems associated with the overlapped decomposition processes for hydrates make the analysis of obtained data difficult. In this paper, the use of high-resolution thermogravimetric analysis, a powerful technique that allows separating decomposition processes in analysis of hydrated binders, was performed for spent FCC catalyst-Portland cement pastes. These pastes were monitored for 1, 4, 8 h and 1, 2, 3, 7 and 28 curing days. In order to study the influence of the pozzolanic material (spent FCC catalyst), Portland cement replacements of 5, 15 and 30 % by mass were carried out. The presence of spent FCC catalyst in blended pastes modified the amount and the nature of the formed hydrates, mainly ettringite and stratlingite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)