172 resultados para OXORHENIUM(V) COMPLEXES
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper, synthesis, characterization and antimycobacterial properties of a new water-soluble complex identified as silver-mandelate are described. Elemental and thermal analyses are consistent with the formula [Ag(C6H5C(OH)COO)](n). The polymeric structure was determined by single X-ray diffraction and the two-dimensional structure is based on the bis(carboxylate-O,O') dimer [Ag-O, 2.237(3), 2.222(3) angstrom]. The structure is extended along both the b and c axes through two oxygen atoms of a bidentate alpha-hydroxyl-carboxylate residue [Ag-OH(hydroxyl), 2.477(3) angstrom; Ag-O(carboxylate), 2.502(3) angstrom; O-Ag-O, 63.94(9)degrees]. A strong d(10)-d(10) interaction was observed between two silver atoms. The Ag...Ag distance is 2.8307(15) angstrom. The NMR C-13 spectrum in D2O shows that coordination of the ligand to Ag(l) occurs through the carboxylate group in solution. Potentiometric titration shows that only species with a molar metaHigand ratio of 2:2 are formed in aqueous solution. The mandelate complex and the silver-glycolate, silver-malate and silver-hydrogen-tartarate complexes were tested against three types of mycobacteria, Mycobacterium avium, Mycobacterium tuberculosis and Mycobacterium kansasii, and their minimal inhibitory concentration (MIC) values were determined. The results show that the four complexes are potential candidates for antiseptic or disinfectant drugs for discharged secretions of patients affected with tuberculosis. (c) 2006 Published by Elsevier B.V.
Resumo:
The present work describes the synthesis and antimycobacterial activity of three Ag(I)-complexes with the sweeteners aspartame, saccharin, and cyclamate as ligands, with the aim of finding new candidate substances for fighting tuberculosis and other mycobacterial infections. The minimal inhibitory concentration of these three complexes was investigated in order to determine their in-vitro antimycobacterial activity against Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium malmoense, and Mycobacterium kansasii. The MIC values were determined using the Microplate Alamar Blue Assay. The best MIC values found for the complexes were 9.75 mu M for Ag(l)-aspartame against M. kansasii and 15.7 mu M for Ag(I)-cyclamate against M. tuberculosis.
Resumo:
Cyclodextrins (CDs) are annular oligosaccharides containing 6-12 glucose unities joined together by alpha-1,4 bonds. They have a conical-truncated shape with a lipophilic cavity in which different molecules can be included resulting in a stable inclusion complex. The cyclodextrins have been widely applied in pharmaceutical technology with the objective of increasing the solubility, stability and bioavailability of drugs in different pharmaceutical dosage forms, such as tablets. In order to obtain beta-CD tablets, liquid dispersions of drug/beta-CD are usually submitted to different drying processes, like spray-drying, freeze-drying or slow evaporation, being this dry material added to a number of excipients. However, such drying processes can generate particulate materials showing problems of flow and compressibility, needing their conversion into granulates by means of wetting with granulation liquid followed by additional drying. In this work, the main objective was to evaluate the preparation of tablets without the need of this additional drying step. For this purpose an aqueous dispersion containing acetaminophen/beta-CD complex and cornstarch was dried using a spouted bed and the obtained granules were compressed in tablets. Acetaminophen was used as model drug due to its low water solubility and the inexpensive and widely available cornstarch was chosen as excipient. Acetaminophen powder was added into a beta-cyclodextrin solution prepared in distilled water at 70 degrees C. Stirring was kept until this dispersion cooled to room temperature. Then cornstarch was added and the resulting dispersion was dried in spouted bed equipment. This material was compressed into tablets using an Erweka Korsh EKO tablet machine. This innovative approach allowed the tablets preparation process to be carried out with fewer steps and represents a technological reliable strategy to produce beta-cyclodextrin inclusion complexes tablets. (C) 2010 Elsevier By. All rights reserved.
Resumo:
The binding selectivity of the M(phen)(edda) (M = Cu, Co, Ni, Zn; phen = 1,10-phenanthroline, edda = ethylenediaminediacetic acid) complexes towards ds(CG)(6), ds(AT)(6) and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(11) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N4O2 octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via pi...pi interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The isotherms of adsorption of MeX2 (Me = Cu2+, Co2+; X = Cl-, Br-, ClO4-) by silica gel chemically modified with 2-mercaptoimidazole (SiMI) were studied in acetone and ethanol solutions, at 25 degrees C. Covalently attached 2-mercaptoimidazole molecule to silica gel surface adsorbs MeX2 from solvent by forming a surface complex. The metal is bonded to the surface through the nitrogen atom of attached 2-mercaptoimidazole. At low loading, the electronic and ESR spectral parameters indicated that the Cu2+ complexes are in a distorted-tetragonal symmetry field. The d-d electronic transition spectra showed that for Cu(ClO4)(2) complex, the peak of absorption did not change for any degree of metal loading and for Cl- and Br- complexes, the peak maxima shifted to higher energy with lower metal loading. The CoX2(X = Cl-, Br-, ClO4-) analogues possess a distorted-tetrahedral field.
Resumo:
The isotherms of adsorption of CuX2 (X=Cl-, Br-, ClO4-) by silica gel chemically modified with 2-amino-1,3,4-thiadiazole were studied in acetone and ethanol solutions: at 298 K. The following equilibria constants (in 1 mol(-1)) were determined: (a) CuCl2: 3.5 x 10(3) (ac), 2.0 x 10(3) (eth); (b) CuBr2: 2.8 x 10(3) (ac), 2.0 x 10(3) (eth); (c) Cu(ClO4)(2): 1.8 x 10(3) (ac), 1.0 x 10(3) (eth); ac = acetone, eth = ethanol. The electron spin resonance spectra of the surface complexes indicated a tetragonal distorted structure in the case of lower degrees of metal loading on the chemically modified surface. The d-d electronic transition spectra showed that for the ClO4-, complex, the peak of absorption did not change for any degree of metal loading, and for Cl- and Br- complexes, the peak maxima shifted to a higher energy region with a lower metal loading. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
The isotherms of adsorption of CuX2 (XCl-, Br-, ClO4-) by silica gel chemically modified with 5-amino-1,3,4-thiadiazole-2-thiol were studied in acetone and ethanol solutions, at 25 degrees C. The following equilibria constants (in L mol(-1)) were determined: (a) CuCl2, 3.2 x 10(3) (ac), 2.5 x 10(3) (eth); (b) CuBr2, 2.9 x 10(3) (ac), 2.3 x 10(3) (eth); (c) Cu(ClO4)(2), 1.8 x 10(3) (ac), 1.2 x 10(3) (eth); ac, acetone; eth, ethanol. The electron spin resonance spectra of the surface complexes indicated a tetragonal-distorted structure in the case of lower degrees of metal loading on the chemically modified surface. The d-d electronic transition spectra showed that for the ClO4- complex, the peak of absorption did not change for any degree of metal loading and for Cl- and Br- complexes, the peak maxima shifted to higher energy with lower metal loadings. (C) 1998 Academic Press.
Resumo:
The isotherms of adsorption of MX2 (M = Cu2+, Co2+; X = Cl-, Br-, ClO4) by silica gel chemically modified with 3-amino-1,2,4-triazole (SiATR) were studied in acetone and ethanol solutions, at 25 degrees C. The 3-amino-1,2,4-triazole molecule, covalently bound to the silica gel surface, adsorbs MX2 from solvent by forming a surface complex. At low loading, the electronic and electron spin resonance spectral parameters indicated that the Cu2+ complexes have distorted tetragonal symmetry. The CoX2 (X = Cl-, Br-) analogues exhibit a distorted-tetrahedral geometry, whilstthe (SiATR)mCo)ClO4)(2) complex has a tetragonally distorted octahedral geometry, with four equatorial nitrogen atoms around the cobalt. (C) 1998 Elsevier B.V. B.V. All rights reserved.