165 resultados para Multi- Choice mixed integer goal programming


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a mixed-integer convex-optimization-based approach for optimum investment reactive power sources in transmission systems. Unlike some convex-optimization techniques for the reactive power planning solution, in the proposed approach the taps settings of under-load tap-changing of transformers are modeled as a mixed-integer linear set equations. Are also considered the continuous and discrete variables for the existing and new capacitive and reactive power sources. The problem is solved for three significant demand scenarios (low demand, average demand and peak demand). Numerical results are presented for the CIGRE-32 electric power system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an efficient genetic algorithm (GA) is presented to solve the problem of multistage and coordinated transmission expansion planning. This is a mixed integer nonlinear programming problem, difficult for systems of medium and large size and high complexity. The GA presented has a set of specialized genetic operators and an efficient form of generation of the initial population that finds high quality suboptimal topologies for large size and high complexity systems. In these systems, multistage and coordinated planning present a lower investment than static planning. Tests results are shown in one medium complexity system and one large size high complexity system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a bilevel model for transmission expansion planning within a market environment, where producers and consumers trade freely electric energy through a pool. The target of the transmission planner, modeled through the upper-level problem, is to minimize network investment cost while facilitating energy trading. This upper-level problem is constrained by a collection of lower-level market clearing problems representing pool trading, and whose individual objective functions correspond to social welfare. Using the duality theory the proposed bilevel model is recast as a mixed-integer linear programming problem, which is solvable using branch-and-cut solvers. Detailed results from an illustrative example and a case study are presented and discussed. Finally, some relevant conclusions are drawn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a methodology to achieve integrated planning and projects for secondary distribution circuits. The planning model is formulated as a mixed integer nonlinear programming problem (MINLP). In order to resolve this problem, a tabu search (TS) algorithm is used, with a neighborhood structure developed to explore the physical characteristics of specific geographies included in the planning and expansion of secondary networks, thus obtaining effective solutions as well as low operating costs and investments. The project stage of secondary circuits consists of calculating the mechanical efforts to determine the support structures of the primary and secondary distribution systems and determining the types of structures that should be used in the system according to topological and electrical parameters of the network and, therefore, accurately assessing the costs involved in the construction and/or reform of secondary systems. A constructive heuristic based on information of the electrical and topological conditions between the medium voltage and low voltage systems is used to connect the primary systems and secondary circuits. The results obtained from planning and design simulations of a real secondary system of electric energy distribution are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O surgimento de novas tecnologias e serviços vem impondo mudanças substanciais ao tradicional sistema de telecomunicações. Múltiplas possibilidades de evolução do sistema fazem da etapa de planejamento um procedimento não só desejável como necessário, principalmente num ambiente de competitividade. A utilização de metodologias abrangentes e flexíveis que possam auxiliar no processo de decisão, fundadas em modelos de otimização, parece um caminho inevitável. Este artigo propõe um modelo de programação linear inteiro misto para ajudar no planejamento estratégico de sistemas de telecomunicações, e em particular da rede de acesso. Os principais componentes de custo e receita são identificados e o modelo é desenvolvido para determinar a configuração da rede (serviços, tecnologias, etc) que maximize a receita esperada pelo operador do sistema. O conceito de números fuzzy é adotado para avaliar o risco técnico-econômico em situações de imprecisão nos dados de demanda. Resultados de experimentos computacionais são apresentados e discutidos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho apresenta a modelagem de um problema particular de Programação da Produção numa Fundição Automatizada e sua resolução por um algoritmo de busca heurística, que explora a estrutura do problema.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An optimisation technique to solve transmission network expansion planning problem, using the AC model, is presented. This is a very complex mixed integer nonlinear programming problem. A constructive heuristic algorithm aimed at obtaining an excellent quality solution for this problem is presented. An interior point method is employed to solve nonlinear programming problems during the solution steps of the algorithm. Results of the tests, carried out with three electrical energy systems, show the capabilities of the method and also the viability of using the AC model to solve the problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A branch and bound (B& B) algorithm using the DC model, to solve the power system transmission expansion planning by incorporating the electrical losses in network modelling problem is presented. This is a mixed integer nonlinear programming (MINLP) problem, and in this approach, the so-called fathoming tests in the B&B algorithm were redefined and a nonlinear programming (NLP) problem is solved in each node of the B& B tree, using an interior-point method. Pseudocosts were used to manage the development of the B&B tree and to decrease its size and the processing time. There is no guarantee of convergence towards global optimisation for the MINLP problem. However, preliminary tests show that the algorithm easily converges towards the best-known solutions or to the optimal solutions for all the tested systems neglecting the electrical losses. When the electrical losses are taken into account, the solution obtained using the Garver system is better than the best one known in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a method for solving the Short Term Transmission Network Expansion Planning (STTNEP) problem is presented. The STTNEP is a very complex mixed integer nonlinear programming problem that presents a combinatorial explosion in the search space. In this work we present a constructive heuristic algorithm to find a solution of the STTNEP of excellent quality. In each step of the algorithm a sensitivity index is used to add a circuit (transmission line or transformer) to the system. This sensitivity index is obtained solving the STTNEP problem considering as a continuous variable the number of circuits to be added (relaxed problem). The relaxed problem is a large and complex nonlinear programming and was solved through an interior points method that uses a combination of the multiple predictor corrector and multiple centrality corrections methods, both belonging to the family of higher order interior points method (HOIPM). Tests were carried out using a modified Carver system and the results presented show the good performance of both the constructive heuristic algorithm to solve the STTNEP problem and the HOIPM used in each step.