132 resultados para Lagrangian bounds in optimization problems
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This article deals with a vector optimization problem with cone constraints in a Banach space setting. By making use of a real-valued Lagrangian and the concept of generalized subconvex-like functions, weakly efficient solutions are characterized through saddle point type conditions. The results, jointly with the notion of generalized Hessian (introduced in [Cominetti, R., Correa, R.: A generalized second-order derivative in nonsmooth optimization. SIAM J. Control Optim. 28, 789–809 (1990)]), are applied to achieve second order necessary and sufficient optimality conditions (without requiring twice differentiability for the objective and constraining functions) for the particular case when the functionals involved are defined on a general Banach space into finite dimensional ones.
Resumo:
A neural model for solving nonlinear optimization problems is presented in this paper. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The network is shown to be completely stable and globally convergent to the solutions of nonlinear optimization problems. A study of the modified Hopfield model is also developed to analyze its stability and convergence. Simulation results are presented to validate the developed methodology.
Resumo:
Técnicas de otimização numérica são úteis na solução de problemas de determinação da melhor entrada para sistemas descritos por modelos matemáticos e cujos objetivos podem ser expressos de uma maneira quantitativa. Este trabalho aborda o problema de otimizar as dosagens dos medicamentos no tratamento da AIDS em termos de um balanço entre a resposta terapêutica e os efeitos colaterais. Um modelo matemático para descrever a dinâmica do vírus HIV e células CD4 é utilizado para calcular a dosagem ótima do medicamento no tratamento a curto prazo de pacientes com AIDS por um método de otimização direta utilizando uma função custo do tipo Bolza. Os parâmetros do modelo foram ajustados com dados reais obtidos da literatura. Com o objetivo de simplificar os procedimentos numéricos, a lei de controle foi expressa em termos de uma expansão em séries que, após truncamento, permite obter controles sub-ótimos. Quando os pacientes atingem um estado clínico satisfatório, a técnica do Regulador Linear Quadrático (RLQ) é utilizada para determinar a dosagem permanente de longo período para os medicamentos. As dosagens calculadas utilizando a técnica RLQ , tendem a ser menores do que a equivalente terapia de dose constante em termos do expressivo aumento na contagem das células T+ CD4 e da redução da densidade de vírus livre durante um intervalo fixo de tempo.
Resumo:
We introduce the notion of KKT-inverity for nonsmooth continuous-time nonlinear optimization problems and prove that this notion is a necessary and sufficient condition for every KKT solution to be a global optimal solution.
Resumo:
This work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. © 2012 Brazilian Operations Research Society.
Resumo:
Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.
Resumo:
This paper presents an efficient approach based on recurrent neural network for solving nonlinear optimization. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it treats optimization and constraint terms in different stages with no interference with each other. Moreover, the proposed approach does not require specification of penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyze its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper presents an efficient neural network for solving constrained nonlinear optimization problems. More specifically, a two-stage neural network architecture is developed and its internal parameters are computed using the valid-subspace technique. The main advantage of the developed network is that it treats optimization and constraint terms in different stages with no interference with each other. Moreover, the proposed approach does not require specification of penalty or weighting parameters for its initialization.
Resumo:
This paper deals with the zeros of polynomials generated by a certain three term recurrence relation. The main objective is to find bounds, in terms of the coefficients of the recurrence relation, for the regions where the zeros are located. In most part, the zeros are explored through an Eigenvalue representation associated with a corresponding Hessenberg rnatrix. Applications to Szego polynomials, para-orthogonal polynomials and polynomials with non-zero complex coefficients are considered. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving constrained nonlinear optimization problems. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach.
Resumo:
A branch and bound algorithm is proposed to solve the [image omitted]-norm model reduction problem for continuous and discrete-time linear systems, with convergence to the global optimum in a finite time. The lower and upper bounds in the optimization procedure are described by linear matrix inequalities (LMI). Also proposed are two methods with which to reduce the convergence time of the branch and bound algorithm: the first one uses the Hankel singular values as a sufficient condition to stop the algorithm, providing to the method a fast convergence to the global optimum. The second one assumes that the reduced model is in the controllable or observable canonical form. The [image omitted]-norm of the error between the original model and the reduced model is considered. Examples illustrate the application of the proposed method.
Resumo:
The development of new techniques that allow the analysis and optimization of energy systems bearing in mind environmental issues is indispensable in a world with finite natural resources and growing demand of energy. Among the energy systems that deserve special attention, cogeneration in the sugar industry must be pointed out, because it uses efficiently a common fuel for generation of useful heat and power. Within this frame, thermoeconomical optimization - 2nd Law of Thermodynamics analysis by exergy function and economic evaluation of the thermal system - gradually is taking importance as a powerful tool to assist to the decision making process. Also, the explicit consideration of environmental issues offers a better way to explore trade-offs between different aspects to support the decisions that must be made. In this work it is used the technique of Life Cycle Analysis (LCA) which allows to consider environmental matters as an integral part of the problem, in opposite to most of the environmental approaches that only reduce residuals generation , without taking into account impacts associated to other related processes. On the other hand, the consideration of environmental issues in optimization of energy systems is a novel and promissory contribution in the state of the art of energy optimization and LCA. The system under study is a sugar plant of Tucumán (Argentina) given the particular importance that this industry had inside the regional economy of the Argentinean Northwest. Although cogeneration comes being used a while ago in sugar industry, being the main objective the generation of heat and as secondary objective the electric power generation and mechanic power to cover several needs of working machineries, to the date it is no available a versatile tool that allows to analyze economical feasible alternatives bearing in mind environmental issues. At sugar plants, steam is generated in boilers using as fuel bagasse - cellulosic fiber waste obtained crushing the sugar cane- and it is used to give useful heat and shaft work to the plant, but it can also be used to generate electricity with export opportunities to the electrical network. The great number of process alternatives outlines a serious decision making problem in order to take advantage of the resources. Although the problem turns out to be a mixed non-linear problem (MINLP), the main contribution of this work is the development of a hybrid strategy to evaluate cogeneration alternatives that combines optimization approaches with environmental indicators. This powerful tool for its versatility and robustness to analyze cogeneration systems, will be of great help in the decision making process, because of their easy implementation to analyze the kind of problems presented in the sugar industry.
Resumo:
The problem of assigning cells to switches in a cellular mobile network is an NP-hard optimization problem. So, real size mobile networks could not be solved by using exact methods. The alternative is the use of the heuristic methods, because they allow us to find a good quality solution in a quite satisfactory computational time. This paper proposes a Beam Search method to solve the problem of assignment cell in cellular mobile networks. Some modifications in this algorithm are also presented, which allows its parallel application. Computational results obtained from several tests confirm the effectiveness of this approach to provide good solutions for medium- and large-sized cellular mobile network.