206 resultados para Finite-dimensional discrete phase spaces
Resumo:
An approach featuring s-parametrized quasiprobability distribution functions is developed for situations where a circular topology is observed. For such an approach, a suitable set of angle - angular momentum coherent states must be constructed in an appropriate fashion.
Resumo:
The spectrum of linearized excitations of the Type IIB SUGRA on AdS(5) x S-5 contains both unitary and non-unitary representations. Among the non-unitary, some are finite-dimensional. We explicitly construct the pure spinor vertex operators for a family of such finite-dimensional representations. The construction can also be applied to in finite-dimensional representations, including unitary, although it becomes in this case somewhat less explicit.
Resumo:
The spectral principle of Connes and Chamseddine is used as a starting point to define a discrete model for Euclidean quantum gravity. Instead of summing over ordinary geometries, we consider the sum over generalized geometries where topology, metric, and dimension can fluctuate. The model describes the geometry of spaces with a countable number n of points, and is related to the Gaussian unitary ensemble of Hermitian matrices. We show that this simple model has two phases. The expectation value
Time evolution of the Wigner function in discrete quantum phase space for a soluble quasi-spin model
Resumo:
The discrete phase space approach to quantum mechanics of degrees of freedom without classical counterparts is applied to the many-fermions/quasi-spin Lipkin model. The Wi:ner function is written for some chosen states associated to discrete angle and angular momentum variables, and the rime evolution is numerically calculated using the discrete von Neumnnn-Liouville equation. Direct evidences in the lime evolution of the Wigner function are extracted that identify a tunnelling effect. A connection with a SU(2)-based semiclassical continuous approach to the Lipkin model is also presented.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We use the framework of noncommutative geometry to define a discrete model for fluctuating geometry. Instead of considering ordinary geometry and its metric fluctuations, we consider generalized geometries where topology and dimension can also fluctuate. The model describes the geometry of spaces with a countable number n of points. The spectral principle of Connes and Chamseddine is used to define dynamics. We show that this simple model has two phases. The expectation value
Resumo:
The location of invariant tori for a two-dimensional Hamiltonian mapping exhibiting mixed phase space is discussed. The phase space of the mapping shows a large chaotic sea surrounding periodic islands and limited by a set of invariant tori. Given the mapping considered is parameterised by an exponent γ in one of the dynamical variables, a connection with the standard mapping near a transition from local to global chaos is used to estimate the position of the invariant tori limiting the size of the chaotic sea for different values of the parameter γ. © 2011 Elsevier B.V. All rights reserved.
Resumo:
A modification of the one-dimensional Fermi accelerator model is considered in this work. The dynamics of a classical particle of mass m, confined to bounce elastically between two rigid walls where one is described by a nonlinear van der Pol type oscillator while the other one is fixed, working as a reinjection mechanism of the particle for a next collision, is carefully made by the use of a two-dimensional nonlinear mapping. Two cases are considered: (i) the situation where the particle has mass negligible as compared to the mass of the moving wall and does not affect the motion of it; and (ii) the case where collisions of the particle do affect the movement of the moving wall. For case (i) the phase space is of mixed type leading us to observe a scaling of the average velocity as a function of the parameter (χ) controlling the nonlinearity of the moving wall. For large χ, a diffusion on the velocity is observed leading to the conclusion that Fermi acceleration is taking place. On the other hand, for case (ii), the motion of the moving wall is affected by collisions with the particle. However, due to the properties of the van der Pol oscillator, the moving wall relaxes again to a limit cycle. Such kind of motion absorbs part of the energy of the particle leading to a suppression of the unlimited energy gain as observed in case (i). The phase space shows a set of attractors of different periods whose basin of attraction has a complicated organization. © 2013 American Physical Society.
Resumo:
We consider parameter dependent semilinear evolution problems for which, at the limit value of the parameter, the problem is finite dimensional. We introduce an abstract functional analytic framework that applies to many problems in the existing literature for which the study of asymptotic dynamics can be reduced to finite dimensions via the invariant manifolds technique. Some practical models are considered to show wide applicability of the theory. © 2013 Society for Industrial and Applied Mathematics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-known q-deformed commutation relation is shown to emerge in a natural way, when the deformation parameter is a root of unity.
Resumo:
The dissociation dynamics of heteronuclear diatomic molecules induced by infrared laser pulses is investigated within the framework of the classical driven Morse oscillator. The interaction between the molecule and the laser field described in the dipole formulation is given by the product of a time-dependent external field with a position-dependent permanent dipole function. The effects of changing the spatial range of the dipole function in the classical dissociation dynamics of large ensembles of trajectories are studied. Numerical calculations have been performed for distinct amplitudes and carrier frequencies of the external pulses and also for ensembles with different initial energies. It is found that there exist a set of values of the dipole range for which the dissociation probability can be completely suppressed. The dependence of the dissociation on the dipole range is explained through the examination of the Fourier series coefficients of the dipole function in the angle variable of the free system. In particular, the suppression of dissociation corresponds to dipole ranges for which the Fourier coefficients associated with nonlinear resonances are null and the chaotic region in the phase space is reduced to thin layers. In this context, it is shown that the suppression of dissociation of heteronuclear molecules for certain frequencies of the external field is a consequence of the finite range of the corresponding permanent dipole. © 2013 American Physical Society.
Resumo:
Rare collisions of a classical particle bouncing between two walls are studied. The dynamics is described by a two-dimensional, nonlinear and area-preserving mapping in the variables velocity and time at the instant that the particle collides with the moving wall. The phase space is of mixed type preventing diffusion of the particle to high energy. Successive and therefore rare collisions are shown to have a histogram of frequency which is scaling invariant with respect to the control parameters. The saddle fixed points are studied and shown to be scaling invariant with respect to the control parameters too. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Matemática - IBILCE