48 resultados para Dielectrical relaxation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report for the first time the thermally stimulated depolarization current (TSDC) spectrum for a direct band-gap AlGaAs sample, where the presence of DX centers is clearly observed by photoconductivity measurements. A TSDC band is obtained, revealing the presence of dipoles, which could be attributed to DX--d+ pairs as indeed predicted by O'Reilly [Appl. Phys. Lett. 55, 1409 (1989)]. The data are fitted by relaxation time distribution approach yielding an average activation energy of 0.108 eV. This is the most striking feature of our data, since this energy has approximately the same value of the DX center binding energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anelastic relaxation (elastic energy loss and Young modulus) of nearly stoichiometric La2CuO4+delta with LTO structure was measured. Extraordinarily intense effects are present below room temperature in the elastic dynamic susceptibility, indicating relaxational dynamics of a relevant fraction of the lattice. The involved degrees of freedom are identified as rotations of the CuO6 octahedra. Two distinct processes are found at frequencies around 1 kKz: one is observed around 150 K and is characterized by a mean activation energy of 2800 K; the second one occurs below 30 K and is governed by atomic tunnelling. Two explanations are proposed for the faster process: i) formation of fluctuating LTT domains on a scale of few atomic cells; ii) the LTO phase is a dynamical Jahn-Teller phase with all the octahedra tunneling between two LTT-like tilts. In both cases there would be important implications regarding the mechanisms giving rise to charge nanophase separation and strong electron-phonon coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A side-chain methacrylate copolymer functionalized with the nonlinear optical chromophore 4-[N-ethyl-N-(2-hydroxyethyl)]amino-2'-chloro-4'-nitroazobenzene, disperse red-13, was prepared and characterized. The chromophore relaxation was investigated measuring the decay of the electrooptic coefficient r(13) and the complex dielectric constant at different temperatures. Results obtained below and above T-g were analyzed using the Kohlrausch-Williams-Watts(KWW) equation, through the study of the temperature dependence of the KWW parameters. Above T-g the relaxation time experimental data were fitted to the Williams-Landel-Ferry (WLF) equation and its parameters determined. Chromophore relaxation leading to the decrease of electrooptic properties was found associated with a primary alpha relaxation. The obtained WLF equation parameters were introduced into the Adam-Gibbs-Tool-Narayanaswamy-Moynihan equation, and the overall relaxation time temperature dependence was successfully obtained in terms of the fictive temperature, accounting for the sample thermal treatment and allowing optimized thermal treatment to be found. The copolymer KWW stretching parameter at the glass transition temperature lies close to the limit value for short-range interactions, i.e., 0.6, suggesting that the chromophore group is participating in primary a relaxation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature and frequency dependence of the F-19 nuclear spin relaxation of the fluoroindate glass, 40InF(3)-20ZnF(2)- 20SrF(2)-2GaF(3)-2NaF-16BaF(2) and the fluorozirconate glass, 50ZrF(4)-20BaF(2)-21LiF-5LaF(3)-4AlF(3); are reported. Measurements were undertaken on pure and Gd3+ doped samples, in the temperature range of 185-1000 K, covering the region below and above the glass transition temperature, T-g. The temperature and frequency dependence of the spin-lattice relaxation rate, T-1(-1), measured in the glassy state at temperature <300 K, is less than the observed dependence at higher temperatures. At temperatures >T-g, the fluorine mobility increases, leading to a more efficient spins lattice relaxation process. Activation energies, for F- motion, are 0.8 eV for the fluoroindate glass and 1 eV for the fluorozirconate glass. The addition of Gd3+ paramagnetic impurities;at 0.1-wt%, does not alter the temperature and frequency dependence of T-1(-1), but increases its magnitude more than one order of magnitude. At temperatures <400 K, the spin-spin relaxation time, T-2(-1), measured for all samples, is determined by the rigid-lattice nuclear dipole-dipole coupling, and it is temperature independent within the accuracy of the measurements. Results obtained for the pure glass, at temperatures >400 K, show that T-2(-1) decreases monotonically as the temperature increases. This decrease is explained as a consequence of the motional narrowing effect caused by the onset of the diffusive motion of the F- ions, with an activation energy around 0.8 eV. For the doped samples, the hyperfine interaction with the paramagnetic impurities is most effective in the relaxation of the nuclear spin, causing an increase in the T(2)(-1)s observed at temperatures >600 K. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last 50 years several studies have been made to understand the relaxation mechanisms of the heavy interstitial atoms present in transition metals and their alloys. Internal friction measurements have been carried out in a Nb-Ti alloy containing 3.1 at.% of Ti produced by the Materials Department of Chemical Engineering Faculty of Lorena (Brazil), with several quantities of oxygen in solid solution using a torsion pendulum. These measurements have been performed by a torsion pendulum in the temperature range from 300 to 700 K with an oscillation frequency between 0.5 and 10 Hz. The experimental results show complex internal friction spectra that have been resolved, into a series of Debye peaks corresponding to different interactions. For each relaxation process it was possible to obtain the height and temperature of the peak, the activation energy and the relaxation time of the process. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the thermal lens, thermal relaxation calorimetry and interferometric methods are applied to investigate the thermo-optical properties of tellurite glasses (in mol%: 80TeO(2)-20 Li2O(TeLi), 80TeO(2)-15Li(2)O-5TiO(2) (TeLiTi-5) and 80TeO(2)-10Li(2)O-10TiO(2) (TeLiTi-10)). Thermal diffusivity, thermal conductivity, specific heat and the temperature coefficients of refractive index, optical path length, thermal expansion and electronic polarizability were determined. The use of three independent methods was useful for a complete characterization of the studied tellurite glasses. In addition, our results showed that the thermal expansion coefficient and the temperature coefficient of the optical path length (dS/dT) were significantly modified with the introduction of titanium, which may be relevant for the application of these glasses in the photonic area. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical properties of natural alexandrite (BeAl2O4:Cr3+) are investigated by the thermally stimulated depolarization current (TSDC) technique. Samples are submitted to consecutive annealing processes and TSDC is carried out after each annealing, yielding bands with different parameters. These bands are fitted by a continuous distribution of relaxation parameters: activation energy and pre-exponential factor of the Arrhenius equation. It has been observed that annealing influences the dipole relaxation behavior, since it promotes a modification of Fe3+ and C3+ impurity distributions on sites of distinct symmetry: Al-1 and Al-2. In order to have a reference for comparison, TSDC is also carried out on a synthetic alexandrite sample, where the only impurity present is Cr3+ ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on electrical relaxation measurements of (1-x)NH4H2PO4-xTiO(2) (x = 0.1) composites by admittance spectroscopy, in the 40-Hz-5-MHz frequency range and at temperatures between 303 and 563 K. Simultaneous thermal and electrical measurements on the composites identify a stable crystalline phase between 373 and 463 K. The real part of the conductivity, sigma', shows a power-law frequency dependence below 523 K, which is well described by Jonscher's expression sigma' = sigma(0)(1 + (omega/omega(p))(n)), where sigma(0) is the dc conductivity, omega(p)/2 pi = f(p) is a characteristic relaxation frequency, and n is a fractional exponent between 0 and 1. Both sigma(0) and f(p) are thermally activated with nearly the same activation energy in the II region, indicating that the dispersive conductivity originates from the migration of protons. However, activation energies decrease from 0.55 to 0.35 eV and n increases toward 1.0, as the concentration of TiO2 nanoparticles increases, thus, enhancing cooperative correlation among moving ions. The highest dc conductivity is obtained for the composite x = 0.05 concentration, with values above room temperature about three orders of magnitude higher than that of crystalline NH4H2PO4 (ADP), reaching values on the order of 0.1 (Omega cm)(-1) above 543 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sudden eccentricity increases of asteroidal motion in 3/1 resonance with Jupiter were discovered and explained by J. Wisdom through the occurrence of jumps in the action corresponding to the critical angle (resonant combination of the mean motions). We pursue some aspects of this mechanism, which could be termed relaxation-chaos: that is, an unconventional form of homoclinic behavior arising in perturbed integrable Hamiltonian systems for which the KAM theorem hypothesis do not hold. © 1987.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last 30 years several studies have been made to understand the relaxation mechanisms of the hydrogen atoms present in transition metals and their alloys. In this work, we observed the stress-induced ordering of hydrogen atoms around the interstitial oxygen atoms near the niobium matrix atoms. We studied this relaxation process by measuring the attenuation of longitudinal ultrasonic waves. These measurements were made in Nb1.0%Zr polycrystalline alloys at 10 and 30 MHz, pure and doped with 0.7 and 4.2 at.% hydrogen. The results revealed a thermally activated relaxation structure around 202 K and 235 K for 10 MHz and 30 MHz respectively. This relaxation structure increases with increasing hydrogen concentration. © 1994.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glasses of composition 40InF3-20SrF2-16BaF2-20ZnF 2-2GdF3-2NaF (mol%) have been prepared under controlled atmosphere. The time response of the stresses under the application of a constant strain was determined by microellipsometer technique, performed in ambient atmosphere at T < Tg = 294°C. The glasses show a Newtonian behavior at small stress level. During the relaxation process, very small grooves perpendicular to the applied strain appeared on the glass surface and affected its behavior after a time. The formation of these grooves is associated with the ambient atmosphere. Measurements in dry atmosphere showed that humidity was an important parameter in the relaxation process.