Electrical relaxation in proton conductor composites based on (NH4)H2PO4/TiO2


Autoria(s): Castillo, J.; Materon, E. M.; Castillo, R.; Vargas, R. A.; Bueno, Paulo Roberto; Varela, José Arana
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/06/2009

Resumo

We report on electrical relaxation measurements of (1-x)NH4H2PO4-xTiO(2) (x = 0.1) composites by admittance spectroscopy, in the 40-Hz-5-MHz frequency range and at temperatures between 303 and 563 K. Simultaneous thermal and electrical measurements on the composites identify a stable crystalline phase between 373 and 463 K. The real part of the conductivity, sigma', shows a power-law frequency dependence below 523 K, which is well described by Jonscher's expression sigma' = sigma(0)(1 + (omega/omega(p))(n)), where sigma(0) is the dc conductivity, omega(p)/2 pi = f(p) is a characteristic relaxation frequency, and n is a fractional exponent between 0 and 1. Both sigma(0) and f(p) are thermally activated with nearly the same activation energy in the II region, indicating that the dispersive conductivity originates from the migration of protons. However, activation energies decrease from 0.55 to 0.35 eV and n increases toward 1.0, as the concentration of TiO2 nanoparticles increases, thus, enhancing cooperative correlation among moving ions. The highest dc conductivity is obtained for the composite x = 0.05 concentration, with values above room temperature about three orders of magnitude higher than that of crystalline NH4H2PO4 (ADP), reaching values on the order of 0.1 (Omega cm)(-1) above 543 K.

Formato

329-336

Identificador

http://dx.doi.org/10.1007/s11581-008-0308-y

Ionics. Heidelberg: Springer Heidelberg, v. 15, n. 3, p. 329-336, 2009.

0947-7047

http://hdl.handle.net/11449/40288

10.1007/s11581-008-0308-y

WOS:000266477300007

Idioma(s)

eng

Publicador

Springer Heidelberg

Relação

Ionics

Direitos

closedAccess

Palavras-Chave #Protonic composites #Phase behavior #Electrical relaxation
Tipo

info:eu-repo/semantics/article