70 resultados para Dependence
Resumo:
Temperature dependence and uniaxial magnetocrystalline anisotropy properties of the chemically synthesized 4 nm L1(0)-Fe55Pt45 nanoparticle assembly by a modified polyol route are reported. As-prepared nanoparticles are superparamagnetic presenting fcc structure, and annealing at 550 degrees C converts the assembly into ferromagnetic nanocrystals with large coercivity (H-C>1 T) in an L1(0) phase. Magnetic measurements showed an increasing in the ferromagnetically ordered fraction of the nanoparticles with the annealing temperature increases, and the remanence ratio, S=M-R/M-S congruent to 0.76, suggests an (111) textured film. A monotonic increase of the blocking temperature T-B, the uniaxial magnetocrystalline anisotropy constant K-U, and the coercivity H-C with increasing annealing temperature was observed. Magnetic parameters indicate an enhancement in the magnetic properties due to the improved Fe55Pt45 phase stabilizing, and the room-temperature stability parameter of 67, which indicates that the magnetization should be stable for more than ten years, makes this material suitable for ultrahigh-density magnetic recording application.(c) 2007 American Institute of Physics.
Resumo:
Tin dioxide varistors doped with Coo, ZnO, Ta2O5 and Cr2O3 were prepared by the mixed oxide method. Temperature dependent impedance spectroscopy revealed two different activation energies, one at low frequencies and the other at high frequencies. These activation energies were associated with the adsorption and reaction of O-2 species at the grain boundary interface. We show that Cr2O3 improves the varistor properties, generating sites for the adsorption of O' and O at the grain boundary region. The O' and O defects are truly responsible for the barrier formation at the grain boundary interface. (c) 2005 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Ba(Zr0.25Ti0.75)O-3(BZT) thin films prepared by the polymeric precursor method (PPM) were annealed at 500, 600, and 700 degrees C for 4h. All films crystallized in the perovskite structure present a crack-free microstructure. Dielectric properties of the BZT thin films were investigated as a function of frequency and applied voltage. The dielectric constant of the films were 36, 152 and 145 at 1 kHz, while the dielectric loss were 0.08, 0.08, and 0.12 at 1 MHz. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ca(Zr0.05Ti0.95)O-3 (CZT) thin films were prepared by the polymeric precursor method by spin-coating process. The films were deposited on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates and annealed at 650 degrees C for 2,4, and 6 It in oxygen atmosphere. Structure and morphology of the CZT thin films were characterized by the X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM) and field-emission scanning electron microscopy (FEG-SEM). XRD revealed that the film is free of secondary phases and crystallizes in the orthorhombic structure. The annealing time influences the grain size, lattices parameter and in the film thickness. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Glass samples with the composition (mol%) 80TeO(2)-10Nb(2)O(5)-5K(2)O-5Li(2)O, stable against crystallization, were prepared containing Yb3+, Tm3+ and Ho3+. The energy transfer and energy back transfer mechanisms in samples containing 5% Yb3+-5% Tm3+ and 5% Yb3+-5% Tm3+-0.5% Ho3+ were estimated by measuring the absorption and fluorescence spectra together with the time dependence of the Yb3+ F-2(5/2) excited state. A good fit for the luminescence time evolution was obtained with the Yokota-Tanimoto's diffusion-limited model. The up-conversion fluorescence was also studied in 5% Yb-5% Tm. 5% Yb-0.5% Ho and 5% Yb-5% Tm-0.5% Ho tellurite glasses under laser excitation at 975 nm. Strong emission was observed from (1)G(4) and F-3(2) Tm3+ energy levels in all samples. The S-5(2) Ho3+ emission was observed only in Yb3+Ho3+ samples being completely quenched in Yb3+/Tm3+/Tm3+ samples. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Kinetic evidence for the role of divalent metal ions in the phosphotransferase activity of polidocanol-solubilized alkaline phosphatase from osseous plate is reported. Ethylenediamine tetreacetate, 1,10-phenanthrolin, and Chelex-100 were used to prepare metal-depleted alkaline phosphatase. Except for Chelex-100, either irreversible inactivation of the enzyme or incomplete removal of metal ions occurred. After Chelex-100 treatment, full hydrolase activity of alkaline phosphatase was recovered upon addition of metal ions. on the other hand, only 20% of transferase activity was restored with 0.1 mu M ZnCl2, in the presence of 1.0 M diethanolamine as phosphate acceptor. In the presence of 0.1 mM MgCl2, the recovery of transferase activity increased to 63%. Independently of the phosphate acceptor used, the transferase activity of the metal-depleted alkaline phosphatase was fully restored by 8 mu M ZnCl2 plus 5 mM MgCl2. In the presence of diethanolamine as phosphate acceptor, manganese, cobalt, and calcium ions did nor stimulate the transferase activity. However, manganese and cobalt-enzyme catalyzed the transfer of phosphate to glycerol and glucose. (C) 1997 Elsevier B.V.
Resumo:
The effects of La2O3 on the properties of (Zn, Co, Ta) doped SnO2 varistors were investigated in this study. The samples with different La2O3 concentrations were sintered at 1400 degrees C for 2 h and their properties were characterized by XRD, SEM, I-V and impedance spectroscopy. The grain size was found to decrease from 13 pm to 9 gm with increasing La2O3 content. The addition of rare earth element leads to increase the nonlinear coefficient and the breakdown voltage. The enhancement was expected to arise from the possible segregation of lanthanide ion due to its larger ionic radius to the grain boundaries, thereby modifying its electrical characteristics. Furthermore, the dopants such as La may help in the adsorption of O' to O '' at the grain boundaries characteristics. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The temperature dependence of photoinduced birefringence was investigated for mixed Langmuir-Blodgett (LB) films from the homopolymer poly[4'-[[2-(methacryloyloxy)ethyl]ethyl-amino]-2-chloro-4-nitroazobenzene] (HPDR13) and cadmium stearate (Cdst) and from the copolymer 4-[N-ethyl-N-(2-hydroxyethyl)]amino-2'-chloro-4'-nitroazobenzene (MMA-DR13) and CdSt. Birefringence was achieved by impinging a linearly polarized light on the LB films. The maximum birefringence achieved decreased with temperature as thermal relaxation of the chromophores was facilitated. The buildup curves for birefringence were fitted with biexponential functions representing distinctly different mechanisms with time constants. The first, fast process is thermally activated and may be represented by an Arrhenius process. The decay of birefringence after switching off the laser source was described by a Kohlraush-Williams-Watts (KWW) function, consistent with a distribution of relaxation times for the polymer system. Activation energies were obtained from Arrhenius plots of the rate constant of the exponential functions and KWW function, which showed that the buildup of birefringence was very similar for the two polymer systems. The decay, however, was slower for the LB film from MMA-DR13/CdSt. (C) 2002 Published by Elsevier B.V. Ltd.
Resumo:
A theoretical model on the basis of the free-volume concept is presented explaining the temperature dependence of photoinduced birefringence in polystyrene films that contain Disperse Red-1. Birefringence increases with temperature up to 180 K as the free volume for isomerization increases, and then decreases as thermally activated processes dominate. The fast process of birefringence decay has a time constant that increases with temperature at low temperatures, due to the change kin photoisomerization.
Resumo:
The chemical and structural nature of powders prepared from the zinc acetate-derived precursor using the sol-gel route is discussed. The influence of the synthesis temperature and of the hydrolytic catalyst on the structural features of the powder is focused on the basis of X-ray powder diffraction (XRPD) and extended X-ray absorption fine structure (EXAFS) measurements and complemented with density and thermoanalysis (TG-DTA) results. EXAFS and XRPD results show that no-washed nanoparticulate powders are composed of a mixture of ZnO (wurtzite), zinc acetate, and zinc hydroxyacetate. The latter has a layered structure typical of hydroxy double salts (HDS). The main component of no-washed powders is always unreacted zinc acetate solid but the relative amount of the zinc-based compounds depends on the nature of the hydrolytic catalyst, hydrolysis ratio, and of synthesis temperature. According to the proportion of the three zinc-based compounds, three families of powders could be distinguished. The amount of ZnO nanoparticles (1.6 +/- 0.6 nm) decreases as the synthesis temperature increases, as the hydrolysis ratio decreases, or by changing from basic to acid catalysis. This finding suggests that the formation of zinc compounds is controlled by the equilibrium between hydrolysis-condensation and complexation-reprecipitation reactions.
Resumo:
BaBi2Ta2O9 thin films having a layered structure were fabricated by metalorganic solution deposition technique. The films exhibited good structural, dielectric, and insulating properties. The room temperature resistivity was found to be in the range of 10(12)-10(14) Omega cm up to 4 V corresponding to a field of 200 kV/cm across the capacitor for films annealed in the temperature range of 500-700 degrees C. The current-voltage (I-V) characteristics as a function of thickness for films annealed at 700 degrees C for 1 h, indicated bulk limited conduction and the log(I) vs V-1/2 characteristics suggested a space-charge-limited conduction mechanism. The capacitance-voltage measurements on films in a metal-insulator-semiconductor configuration indicated good Si/BaBi2Ta2O9 interface characteristics and a SiO2 thickness of similar to 5 nm was measured and calculated. (C) 1999 American Institute of Physics. [S0003-6951(99)00830-X].
Resumo:
Parabolic quantum wells (PQWs) have been studied by temperature dependent photoluminescence (PL). Two kind of samples have been studied. Concerning the undoped sample, the dominant luminescences were the bulk GaAs and the fundamental transition of the PQW. The evolution on temperature of the energy position of both PL emissions follows the well known Varshing formula. For the doped samples strong radiative recombination of the electron gas with photogenerated holes was observed. At low temperature strong Fermi level enhancement occurs in the luminescence as a result of the multi-electron-hole scattering, which is smear out increasing the temperature.
Resumo:
Nicotine is an addictive drug like heroin, amphetamine or cocaine. Addiction to tobacco leads to significant failure rates in programmes for smoking cessation. The alpha(4)beta(2) and alpha(7) nicotinic acetylcholine receptors (nAChRs) and CB1 cannabinoid receptors play an important role in nicotine addiction.