238 resultados para Degenerate bifurcation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a time-dependent dynamical hydrodynamic model to study a collapse in a degenerate fermion-fermion mixture ( DFFM) of different atoms. Due to a strong Pauli-blocking repulsion among identical spin-polarized fermions at short distances, there cannot be a collapse for repulsive interspecies fermion fermion interaction. However, there can be a collapse for a sufficiently attractive interspecies fermion-fermion interaction in a DFFM of different atoms. Using a variational analysis and numerical solution of the hydrodynamic model, we study different aspects of collapse in such a DFFM initiated by a jump in the interspecies fermion-fermion interaction ( scattering length) to a large negative ( attractive) value using a Feshbach resonance. Suggestion for experiments of collapse in a DFFM of distinct atoms is made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a one-dimensional mean-field-hydrodynamic model of a two-component degenerate Fermi gas in an external trap, each component representing a spin state of the same atom. We demonstrate that the interconversion between them (linear coupling), imposed by a resonant electromagnetic wave, transforms the immiscible binary gas into a miscible state, if the coupling constant, kappa, exceeds a critical value, kappa(cr). The effect is predicted in a variational approximation, and confirmed by numerical solutions. Unlike the recently studied model of a binary Bose-Einsten condensate with the linear coupling, the components in the immiscible phase of the binary fermion mixture never fill two separated domains with a wall between them, but rather form antilocked (pi-phase-shifted) density waves. Another difference from the bosonic mixture is spontaneous breaking of symmetry between the two components in terms of the numbers of atoms in them, N(1) and N(2). The latter effect is characterized by the parameter nu equivalent to(N(1)-N(2))/(N(1)+N(2)) (only N(1)+N(2) is a conserved quantity), the onset of miscibility at kappa >=kappa(cr) meaning a transition to nu equivalent to 0. At kappa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we studied a non-ideal system with two degrees of freedom consisting of a dumped nonlinear oscillator coupled to a rotatory part. We investigated the stability of the equilibrium point of the system and we obtain, in the critical case, sufficient conditions in order to obtain an appropriate Normal Form. From this, we get conditions for the appearance of Hopf Bifurcation when the difference between the driving torque and the resisting torque is small. It was necessary to use the Bezout Theorem, a classical result of Algebraic Geometry, in the obtaining of the foregoing results. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the qualitative differences in the phase transitions of the mono-mode Dicke model in its integrable and chaotic versions. These qualitative differences are shown to be connected to the degree of entanglement of the ground state correlations as measured by the linear entropy. We show that a first order phase transition occurs in the integrable case whereas a second order in the chaotic one. This difference is also reflected in the classical limit: for the integrable case the stable fixed point in phase space undergoes a Hopf type whereas the second one a pitchfork type bifurcation. The calculation of the atomic Wigner functions of the ground state follows the same trends. Moreover, strong correlations are evidenced by its negative parts. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

M. Manoel and I. Stewart 0101) classify Z(2) circle plus Z(2)-equivariant bifurcation problems up to codimension 3 and 1 modal parameter, using the classical techniques of singularity theory of Golubistky and Schaeffer [8]. In this paper we classify these same problems using an alternative form: the path formulation (Theorem 6.1). One of the advantages of this method is that the calculates to obtain the normal forms are easier. Furthermore, in our classification we observe the presence of only one modal parameter in the generic core. It differs from the classical classification where the core has 2 modal parameters. We finish this work comparing our classification to the one obtained in [10].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we study existence, bifurcation, and symmetries of small solutions of the nonlinear equation Lx = N(x, p, epsilon) + mu f, which is supposed to be equivariant under the action of a group OHm, and where f is supposed to be OHm-invariant. We assume that L is a linear operator and N(., p, epsilon) is a nonlinear operator, both defined in a Banach space X, with values in a Banach space Z, and p, mu, and epsilon are small real parameters. Under certain conditions we show the existence of symmetric solutions and under additional conditions we prove that these are the only feasible solutions. Some examples of nonlinear ordinary and partial differential equations are analyzed. (C) 1995 Academic Press, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a time-dependent dynamical mean-field-hydrodynamic model to study mixing-demixing in a degenerate fermion-fermion mixture (DFFM). It is demonstrated that with the increase of interspecies repulsion and/or trapping frequencies, a mixed state of a DFFM could turn into a fully demixed state in both three-dimensional spherically symmetric as well as quasi-one-dimensional configurations. Such a demixed state of a DFFM could be experimentally realized by varying an external magnetic field near a fermion-fermion Feshbach resonance, which will result in an increase of interspecies fermion-fermion repulsion, and/or by increasing the external trap frequencies. © 2006 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems.