72 resultados para CEO duality
Resumo:
We derive Virasoro constraints for the zero momentum part of the QCD-like partition functions in the sector of topological charge v. The constraints depend on the topological charge only through the combination N-f +betav/2 where the value of the Dyson index beta is determined by the reality type of the fermions. This duality between flavor and topology is inherited by the small-mass expansion of the partition function and all spectral sum rules of inverse powers of the eigenvalues of the Dirac operator. For the special case beta =2 but arbitrary topological charge the Virasoro constraints are solved uniquely by a generalized Kontsevich model with the potential V(X) = 1/X.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The free action for massless Ramond-Ramond fields is derived from closed superstring field theory using the techniques of Siegel and Zwiebach. For the uncompactified Type IIB superstring, this gives a manifestly Lorentz-covariant action for a self-dual five-form field strength. Upon compactification to four dimensions, the action depends on a U(1) field strength from 4D N = 2 supergravity. However, unlike the standard Maxwell action, this action is manifestly invariant under the electromagnetic duality transformation which rotates F-mn into epsilon(mnpq)F(pq).
Resumo:
The Weyl-Wigner prescription for quantization on Euclidean phase spaces makes essential use of Fourier duality. The extension of this property to more general phase spaces requires the use of Kac algebras, which provide the necessary background for the implementation of Fourier duality on general locally compact groups. Kac algebras - and the duality they incorporate - are consequently examined as candidates for a general quantization framework extending the usual formalism. Using as a test case the simplest nontrivial phase space, the half-plane, it is shown how the structures present in the complete-plane case must be modified. Traces, for example, must be replaced by their noncommutative generalizations - weights - and the correspondence embodied in the Weyl-Wigner formalism is no longer complete. Provided the underlying algebraic structure is suitably adapted to each case, Fourier duality is shown to be indeed a very powerful guide to the quantization of general physical systems.
Resumo:
The Weyl-Wigner correspondence prescription, which makes great use of Fourier duality, is reexamined from the point of view of Kac algebras, the most general background for noncommutative Fourier analysis allowing for that property. It is shown how the standard Kac structure has to be extended in order to accommodate the physical requirements. Both an Abelian and a symmetric projective Kac algebra are shown to provide, in close parallel to the standard case, a new dual framework and a well-defined notion of projective Fourier duality for the group of translations on the plane. The Weyl formula arises naturally as an irreducible component of the duality mapping between these projective algebras.
Resumo:
Superstring field theory was recently used to derive a four-dimensional Maxwell action with manifest duality. This action is related to the McClain-Wu-Yu Hamiltonian and can be locally coupled to electric and magnetic sources. In this letter, the manifestly dual Maxwell action is supersymmetrized using N = 1 and N = 2 superspace. The N = 2 version may be useful for studying Seiberg-Witten duality. © 1997 Elsevier Science B.V.
Resumo:
Using the conformal compensator superfields of N = 2 D = 4 supergravity, the Type IIB S-duality transformations are expressed as a linear rotation which mixes the compensator and matter superfields. The classical superspace action for D = 4 compactifications of Type IIB supergravity is manifestly invariant under this transformation. Furthermore, the introduction of conformal compensators allows a Fradkin-Tseytlin term to be added to the manifestly SL(2,Z)-covariant sigma model action of Townsend and Cederwall. © 1998 Published by Elsevier Science B.V.
Resumo:
The standard eleven-dimensional supergravity action depends on a three-form gauge field and does not allow direct coupling to five-branes. Using previously developed methods, we construct a covariant eleven-dimensional supergravity action depending on a three-form and six-form gauge field in a duality-symmetric manner. This action is coupled to both the M-theory two-brane and five-brane, and corresponding equations of motion are obtained. Consistent coupling relates D = 11 duality properties with self-duality properties of the M5-brane. From this duality-symmetric formulation, one derives an action describing coupling of the M-branes to standard D = 11 supergravity. © 1998 Elsevier Science B.V.
Resumo:
We employ the Dirac-like equation for the gauge field proposed by Majorana to obtain an action that is symmetric under duality transformation. We also use the equivalence between duality and chiral symmetry in this fermionlike formulation to show how the Maxwell action can be seen as a mass term. ©2000 The American Physical Society.
Resumo:
We give a description of the dual varieties of all developables of osculating linear spaces to a projective curve in terms of the higher order dual varieties of the curve, in arbitrary characteristic. We also determine for these varieties the inseparable degrees of the projections from the conormal varieties onto their dual varieties.
Resumo:
Some properties of the higher grading integrable generalizations of the conformal affine Toda systems are studied. The fields associated to the non-zero grade generators are Dirac spinors. The effective action is written in terms of the Wess-Zumino-Novikov-Witten (WZNW) action associated to an affine Lie algebra, and an off-critical theory is obtained as the result of the spontaneous breakdown of the conformal symmetry. Moreover, the off-critical theory presents a remarkable equivalence between the Noether and topological currents of the model. Related to the off-critical model we define a real and local lagrangian provided some reality conditions are imposed on the fields of the model. This real action model is expected to describe the soliton sector of the original model, and turns out to be the master action from which we uncover the weak-strong phases described by (generalized) massive Thirring and sine-Gordon type models, respectively. The case of any (untwisted) affine Lie algebra furnished with the principal gradation is studied in some detail. The example of s^l(n) (n = 2, 3) is presented explicitly. © SISSA/ISAS 2003.
Resumo:
This paper investigates corrosion behavior in graphite refractory hot metal impregnated with ZrO 2 and CeO 2 carrying solutions used in Blast Furnace hearth, consisting of 50% graphite and 50% anthracite. Corrosions tests were carried out by means of finger test method in an induction furnace, using bar-shaped 30×30×280 mm test specimens and hot metal from CSN#2 Blast Furnace runner. The temperature chosen for this test was 1520°C and sixty-minute isotherm. Upon test completion, test specimens were characterized by their dimensional variation, X-ray diffractometry and Scanning Electronic Microscopy (SEM).
Resumo:
Bieri-Eckmann [6] introduced the concept of relative cohomology for a group pair (G, S), where G is a group and S is a family of subgroups of G and, by using that theory, they introduced the concept of Poincaré duality pairs (G, S) and provided a topological interpretation for such pairs through Eilenberg-MacLane pairs K(G, S, 1). A Poincaré duality pair is a pair (G, S) that satisfies two isomorphisms, one between absolute cohomology and relative homology and the second between relative cohomology and absolute homology. In this paper, we present a proof that those two isomorphisms are equivalent. We also present some calculations on duality pairs by using the cohomological invariant defined in [1] and studied in [2-4]. © 2012 Pushpa PublishingHouse.
Resumo:
Cystalline ceria (CeO2) nanoparticles have been synthesized by a simple and fast microwave-assisted hydrothermal (MAH) under NaOH, KOH, and NH4OH mineralizers added to a cerium ammonium nitrate aqueous solution. The products were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transformed-IR and Raman spectroscopies. Rietveld refinement reveals a cubic structure with a space group Fm3m while infrared data showed few traces of nitrates. Field emission scanning microcopy (FEG-SEM) revealed a homogeneous size distribution of nanometric CeO2 nanoparticles. The MAH process in KOH and NaOH showed most effective to dehydrate the adsorbed water and decrease the hydrogen bonding effect leaving a weakly agglomerated powder of hydrated ceria. TEM micrographs of CeO2 synthesized under MAH conditions reveal particles well-dispersed and homogeneously distributed. The MAH enabled cerium oxide to be synthesized at 100 °C for 8 min. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)