65 resultados para Bifurcation (mathematics)
Resumo:
We present the qualitative differences in the phase transitions of the mono-mode Dicke model in its integrable and chaotic versions. These qualitative differences are shown to be connected to the degree of entanglement of the ground state correlations as measured by the linear entropy. We show that a first order phase transition occurs in the integrable case whereas a second order in the chaotic one. This difference is also reflected in the classical limit: for the integrable case the stable fixed point in phase space undergoes a Hopf type whereas the second one a pitchfork type bifurcation. The calculation of the atomic Wigner functions of the ground state follows the same trends. Moreover, strong correlations are evidenced by its negative parts. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this paper I argue for the view that structuralism offers the best perspective for an acceptable account of the applicability of mathematics in the empirical sciences. Structuralism, as I understand it, is the view that mathematics is not the science of a particular type of objects, but of structural properties of arbitrary domains of entities, regardless of whether they are actually existing, merely presupposed or only intentionally intended.
Resumo:
M. Manoel and I. Stewart 0101) classify Z(2) circle plus Z(2)-equivariant bifurcation problems up to codimension 3 and 1 modal parameter, using the classical techniques of singularity theory of Golubistky and Schaeffer [8]. In this paper we classify these same problems using an alternative form: the path formulation (Theorem 6.1). One of the advantages of this method is that the calculates to obtain the normal forms are easier. Furthermore, in our classification we observe the presence of only one modal parameter in the generic core. It differs from the classical classification where the core has 2 modal parameters. We finish this work comparing our classification to the one obtained in [10].
Resumo:
In this paper we study codimension-one Hopf bifurcation from symmetric equilibrium points in reversible equivariant vector fields. Such bifurcations are characterized by a doubly degenerate pair of purely imaginary eigenvalues of the linearization of the vector field at the equilibrium point. The eigenvalue movements near such a degeneracy typically follow one of three scenarios: splitting (from two pairs of imaginary eigenvalues to a quadruplet on the complex plane), passing (on the imaginary axis), or crossing (a quadruplet crossing the imaginary axis). We give a complete description of the behaviour of reversible periodic orbits in the vicinity of such a bifurcation point. For non-reversible periodic solutions. in the case of Hopf bifurcation with crossing eigenvalues. we obtain a generalization of the equivariant Hopf Theorem.
Resumo:
We use singularity theory to classify forced symmetry-breaking bifurcation problemsf(z, lambda, mu) = f(1)(z, lambda) + muf(2)(z, lambda, mu) = 0,where f(1) is O(2)-equivariant and f(2) is D-n-equivariant with the orthogonal group actions on z is an element of R-2. Forced symmetry breaking occurs when the symmetry of the equation changes when parameters are varied. We explicitly apply our results to the branching of subharmonic solutions in a model periodic perturbation of an autonomous equation and sketch further applications.
Resumo:
The aim of this paper is to discuss teachers' perceptions of change in their thought and/or practice over time and their perceptions of what kind of experiences or challenges might have influenced those changes. Two mathematics teaching life histories of Brazilian teachers are examined, considering a context of curriculum development in the state of São Paulo, Brazil. Reflection on teachers' thought and practice and interest in their own development, including interest in their own learning of mathematics, seemed to be the most important internal aspects influencing change and development. Close support seemed to be the most important external aspect. The retrospective analysis put a good face on personal change and development. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
This chapter presents a collaborative experience between two neighbouring countries from South America: Argentina and Brazil. Our purpose is to share a model of international collaboration that we consider to be an alternative to the classical movement of early mathematical and scientific knowledge between East and West and between North and South. We start our chapter with a general discussion about the phenomenon of globalization considering some local examples. We characterize our collaboration exploring the tensions and difficulties we faced along our own professional development at the local as well as the international level. We describe the development of our prior collaborative work that established the foundation for our international collaboration portraying the local mathematics education communities. We refer to some balances that were created among our relationships, the expansion of our collaborative network, and how this particular collaboration allows us to contribute to the regional field and inform the international one. We discuss the way that the search for balance and symmetry, or at least a complementary asymmetry in our collaborative relationships, has led us to generate a genuine and equitable collaboration.
Resumo:
This work presents the complete set of features for solutions of a particular non-ideal mechanical system near the fundamental and near to a secondary resonance region. The system comprises a pendulum with a horizontally moving suspension point. Its motion is the result of a non-ideal rotating power source (limited power supply), acting oil the Suspension point through a crank mechanism. Main emphasis is given to the loss of stability, which occurs by a sequence of events, including intermittence and crisis, when the system reaches a chaotic attractor. The system also undergoes a boundary-crisis, which presents a different aspect in the bifurcation diagram due to the non-ideal supposition. (c) 2004 Published by Elsevier B.V.
On bifurcation and symmetry of solutions of symmetric nonlinear equations with odd-harmonic forcings
Resumo:
In this work we study existence, bifurcation, and symmetries of small solutions of the nonlinear equation Lx = N(x, p, epsilon) + mu f, which is supposed to be equivariant under the action of a group OHm, and where f is supposed to be OHm-invariant. We assume that L is a linear operator and N(., p, epsilon) is a nonlinear operator, both defined in a Banach space X, with values in a Banach space Z, and p, mu, and epsilon are small real parameters. Under certain conditions we show the existence of symmetric solutions and under additional conditions we prove that these are the only feasible solutions. Some examples of nonlinear ordinary and partial differential equations are analyzed. (C) 1995 Academic Press, Inc.
Resumo:
This is a philosophical essay on a phenomenological way to understand and to work out Mathematics Education. Its philosophical grounding is the Husserlian work, focusing on its key word "going to the things themselves" in order to keep us away from the theoretical educational truth, took as the unique one. We assume the attitude of being on the life-world with the students and Mathematics as a field of research and practice that show and express themselves through lived experiences and through language. We assume to be in search of understanding of education, learning and Mathematics, as we take care, consciously, of what we are doing and saying in the same movement of saying and doing it.