28 resultados para Absorption rate
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Um método de correção de interferência espectral e de transporte é proposto, e foi aplicado para minimizar interferências por moléculas de PO produzidas em chama ar-acetileno e de transporte causada pela variação da concentração de ácido fosfórico. Átomos de Pb e moléculas de PO absorvem a 217,0005 nm, então Atotal217,0005 nm = A Pb217,0005 nm + A PO217,0005 nm. Monitorando o comprimento de onda alternativo de PO em 217,0458 nm, é possível calcular a contribuição relativa de PO na absorbância total a 217,0005 nm: A Pb217,0005 nm = Atotal217,0005 nm - A PO217,0005 nm = Atotal217,0005 nm - k (A PO217,0458 nm). O fator de correção k é a razão entre os coeficientes angulares de duas curvas analíticas para P obtidas a 217,0005 e 217,0458 nm (k = b217,0005 nm/b217,0458 nm). Fixando-se a taxa de aspiração da amostra em 5,0 ml min-1, e integrando-se a absorbância no comprimento de onda a 3 pixels, curvas analíticas para Pb (0,1 - 1,0 mg L-1) foram obtidas com coeficientes de correlação típicos > 0,9990. As correlações lineares entre absorbância e concentração de P nos comprimentos de onda 217,0005 e 217,0458 foram > 0,998. O limite de detecção de Pb foi 10 µg L-1. O método de correção proposto forneceu desvios padrão relativos (n=12) de 2,0 a 6,0%, ligeiramente menores que os obtidos sem correção (1,4-4,3%). As recuperações de Pb adicionado às amostras de ácido fosfórico variaram de 97,5 a 100% (com correção pelo método proposto) e de 105 a 230% (sem correção).
Resumo:
The fast sequential multi-element determination of Ca, Mg, K, Cu, Fe, Mn and Zn in plant tissues by high-resolution continuum source flame atomic absorption spectrometry is proposed. For this, the main lines for Cu (324.754 nm), Fe (248.327 nm), Mn (279.482 nm) and Zn (213.857 nm) were selected, and the secondary lines for Ca (239.856 nm), Mg (202.582 nm) and K (404.414 nm) were evaluated. The side pixel registration approach was studied to reduce sensitivity and extend the linear working range for Mg by measuring at wings (202.576 nm; 202.577 nm; 202.578 nm; 202.580 nm: 202.585 nm; 202.586 nm: 202.587 nm; 202.588 nm) of the secondary line. The interference caused by NO bands on Zn at 213.857 nm was removed using the least-squares background correction. Using the main lines for Cu, Fe, Mn and Zn, secondary lines for Ca and K, and line wing at 202.588 nm for Mg, and 5 mL min(-1) sample flow-rate, calibration curves in the 0.1-0.5 mg L-1 Cu, 0.5-4.0 mg L-1 Fe, 0.5-4.0 mg L-1 Mn, 0.2-1.0 mg L-1 Zn, 10.0-100.0 mg L-1 Ca, 5.0-40.0 mg L-1 Mg and 50.0-250.0 mg L-1 K ranges were consistently obtained. Accuracy and precision were evaluated after analysis of five plant standard reference materials. Results were in agreement at a 95% confidence level (paired t-test) with certified values. The proposed method was applied to digests of sugar-cane leaves and results were close to those obtained by line-source flame atomic absorption spectrometry. Recoveries of Ca, Mg, K, Cu, Fe, Mn and Zn in the 89-103%, 84-107%, 87-103%, 85-105%, 92-106%, 91-114%, 96-114% intervals, respectively, were obtained. The limits of detection were 0.6 mg L-1 Ca, 0.4 mg L-1 Mg, 0.4 mg L-1 K, 7.7 mu g L-1 Cu, 7.7 mu g L-1 Fe, 1.5 mu g L-1 Mn and 5.9 mu g L-1 Zn. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The primary excited state absorption processes relating to the (5)I(6) -> (5)I(7) 3 mu m laser transition in singly Ho(3+)-doped fluoride glass have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the (5)I(6) and (5)I(7) energy levels established the occurrence of two excited state absorption transitions from these energy levels that compete with previously described energy transfer upconversion processes. The (5)I(7) -> (5)I(4) excited state absorption transition has peak cross sections at 1216 nm (sigma(esa)=2.8x10(-21) cm(2)), 1174 nm (sigma(esa)=1x10(-21) cm(2)), and 1134 nm (sigma(esa)=7.4x10(-22) cm(2)) which have a strong overlap with the (5)I(8) -> (5)I(6) ground state absorption. on the other hand, it was established that the excited state absorption transition (5)I(6) -> (5)S(2) had a weak overlap with ground state absorption. Using numerical solution of the rate equations, we show that Ho(3+)-doped fluoride fiber lasers employing pumping at 1100 nm rely on excited state absorption from the lowest excited state of Ho(3+) to maintain a population inversion and that energy transfer upconversion processes compete detrimentally with the excited state absorption processes in concentrated Ho(3+)-doped fluoride glass. (c) 2008 American Institute of Physics.
Resumo:
A method based an ion exchange(IE)-atomic absorption spectrometry(AAS) coupled by flow techniques, allowing the determination of formation constants of, at least, the first species of complex systems, in aqueous solution, was developed.The IE-AAS coupling reduces significantly the number of experimental steps in comparison with IE batch methods, resulting in an important increase in analytical rate. The method is simple both from experimental and computational points of view, making possible its utilization by workers without special expertise in the field of complex equilibria in solution. on the other hand, taking into account mainly the amount of hollow cathode lamps available to date, the developed procedure may be applied, within certain limitations, to the study of many systems whose features prevent the use of traditional approaches.
Resumo:
We report the observation of negative nonlinear absorption in fluoroindate glasses doped with erbium ions. The pumping wavelength is 800 nm which is doubly resonant with Er3+ ions transitions. A large nonlinear intensity dependence of the optical transmittance and strong upconverted fluorescence are obtained. The dependence of the upconverted fluorescence intensity with the laser power is described by a system of coupled-rate equations for the energy levels' populations. (C) 1998 American Institute of Physics. [S0021-8979(98)07816-5].
Resumo:
Non-linear absorption is observed in Er3+-doped fluoroindate glass (in mol% 37InF2:20ZnF2:20SrF2:16BaF2:2GdF2: 2NaF:1GaF3:2ErF3) when the sample is irradiated with a CW laser emitting at 650 nm. An intensity dependence of the optical transmittance is detected. Saturation and sequential absorption of two photons are responsible for the decrease of 50% in the transmittance. The results are explained by simple models which are solved based on rate-equations for the populations of energy levels.
Resumo:
In this work it was developed a procedure for the determination of vanadium in urine samples by electrothermal atomic absorption spectrometry using successive injections for preconcentration into a preheated graphite tube. Three 60 μL volumes were sequentially injected into the atomizer preheated to a temperature of 110°C. Drying and pyrolysis steps were carried out after each injection. A chemical modifier, barium difluoride (100 mg L-1), and a surfactant, Triton X-100 (0.3% v v-1), were added to the urine sample. When injecting into a hot graphite tube, the sample flow-rate was 0.5 μL s-1. The limits of detection and quantification were 0.54 and 1.82 without preconcentration, and 0.11 and 0.37 μg L-1 with preconcentration, respectively. The accuracy of the procedure was evaluated by an addition-recovery experiment employing urine samples. Recoveries varied from 96.0 to 103% for additions ranging from 0.8 to 3.5 μg L-1 V. The developed procedure allows the determination of vanadium in urine without any sample pretreatment and with minimal dilution of the sample.
Resumo:
The compaction rate, the relation between the density of the wood panel and the density of the wood used for producing the particles, is an indicator of the product's densification. Among the various types of wood panels, particleboards are widely employed in the lumber industry, mainly for the furniture production. This paper presents a study of the relation between the compaction rate and the properties of tensile strength perpendicular to surface, Modulus of Rupture (MOR) and Modulus of Elasticity (MOE) obtained from a static bending test, thickness swelling and water absorption (2 and 24 hours). These properties were calculated according to the Brazilian ABNT, NBR 14810 standard. Particleboards were produced using the species Pinus elliotti and adhesive ureaformaldehyde. The relation was established by a multiple linear regression, and the most appropriate statistical models were determined. The estimated models indicate statistically significant effects of water absorption in 2 hours and MOR in the particleboards' compaction rate.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)